Xiuling Lu Announced as AAPS Fellow

September 12, 2023

From UConn Today

Dr. Xiuling Lu has been named AAPS fellow.
Dr. Xiuling Lu

Xiuling Lu has attained the esteemed title of AAPS Fellow, a recognition of her steadfast commitment to pioneering research, marked by its unwavering excellence and innovation, and the transformative effects it has had on patients grappling with unmet medical needs.

An AAPS Fellow is an AAPS member who is recognized as a leader in the pharmaceutical field. Peers recognize Fellows for facing challenges head-on with creative solutions in the discovery, development or regulation of pharmaceuticals and biologics.

The status of Fellow denotes professional excellence and a sustained, positive impact to global health and to the AAPS Community. AAPS Fellows are encouraged to continue to actively contribute to their fields and to AAPS throughout their tenure.

Lu stands as a distinguished luminary in the realm of nanoparticle-based therapeutics and their corresponding product advancement. At UConn, her lab has successfully devised inventive image-guided therapeutic nanoparticle systems, surmounting considerable obstacles within the realm of cancer treatment. Lu’s contributions extend further to a profound comprehension of the challenges associated with designing therapeutic agents, enhancing the bedrock understanding of delivery and treatment barriers.

Lu’s engagement encompasses not only the translation of prospective therapeutics to clinical applications but also the commercialization of nanomedicines. Her resolute dedication to scientific advancement and her altruistic endeavors within the community have merited her a multitude of local and national accolades. Lu has served of Chair of the Faculty at the National Institute for Pharmaceutical Technology and Education, and presently holds the mantle of Associate Director at the Center for Pharmaceutical Processing Research, concurrently serving as a leader in the AAPS Nanotechnology Community.

Masha Aleksich Wins Top Poster Prize at ACS NERM 2023

July 20, 2023

Mariya "Masha" Aleksich
Mariya “Masha” Aleksich

Mariya “Masha” Aleksich won first place in the American Chemical Society’s (ACS) Northeast Regional Meeting 2023 (NERM) Graduate Student Poster competition for her presentation, Topological Engineering by Size and Steric Direction of Metal-Organic Chalcogenate (MOCha) Hybrid Assemblies.

A graduate student in Dr. Nate Hohman’s group, Masha’s research concentrates on optimizing synthesis of MOCHas for comprehensive characterization.

Masha holds a B.S. in chemistry from Texas A&M University (2020) where she focused on synthesis of chiral amino acid-based surfactants. She is a third-year graduate student in the Hohman Group. She also serves as V.P. and Treasurer of the Joint Safety Team in the Department of Chemistry.

IMS congratulates Masha on this impressive recognition.

 

IMS Welcomes New Staff Members

June 12, 2023

Jesse David
Jesse David
Nicole Jagielo
Nicole Jagielo
Mustafa Yavuz
Mustafa Yavuz

The Institute of Materials Science (IMS) at UConn is pleased to announce the addition of three new staff members who will enhance the Institute’s research and outreach capabilities.

Jesse David joined IMS as Stock Room and Lab Safety Manager in March.  Jesse comes to IMS from within the University, having previously served as environmental health and safety coordinator for the Innovation Partnership Building (IPB). An analytical chemist interested in research and development, cannabis, and quality testing roles, Jesse brings a strong background in method validation and analysis on HPLC, UPLC, GC/MS, GC/FID. Jesse holds a B.S. in Chemistry from the University of South Florida and has held positions of increasing responsibility at alternative medicine company Trulieve in Tallahassee, Florida.  An avid environmentalist, Jesse has volunteered for environmental agencies including Coastal Cleanup in Tampa Bay, FL, and the Tampa Audubon Society.

Nicole Jagielo joins IMS as the new Grants and Contracts Assistant. Nicole will report directly to Christina Tamburro to support the post-award grant needs of IMS researchers. Nicole has extensive experience with payroll and HuskyBuy processing at UConn, having worked in several departments and centers across the university. She holds a bachelor’s degree from Rutgers University.

Dr. Mustafa Selman Yavuz joins IMS as the new clean room manager. He received his Ph.D. in Chemistry at UConn working with Dr. Greg Sotzing. He completed his postdoctoral work at Washington University with Dr. Younan Xia. Mustafa was formerly the R&D Director of 3BC Inc., a consultant, and Director at Biyotez Kimya Limited. Mustafa will be responsible for running the clean room and training researchers on the proper use of clean room equipment.

IMS is an advanced materials research institution providing superior graduate research education in the interdisciplinary fields of materials science and polymer science and offering materials-related technical outreach to Connecticut’s industries.

IMS Industrial Affiliates Program Hosts 2023 Annual Meeting

June 8, 2023

2023 Annual Meeting - Morning Session
The morning session was held in the Science 1 Active Learning Classroom.

On May 25, 2023, the Institute of Materials Science (IMS) Industrial Affiliates Program (IAP) held its first in-person annual meeting since the onset of the COVID-19 pandemic in 2020.

The meeting began with a welcome message by Dr. Hatice Bodugoz-Senturk, Associate Director of the IMS Industrial Affiliates Program, followed by remarks by Dr. Steven L. Suib, Director of IMS, and Dr. Paul Nahass, Director of the IMS Industrial Affiliates Program. Dr. Bryan Huey, Department Head of Materials Science and Engineering (MSE) gave an overview of the MSE department and its achievements; and Dr. Kelly Burke, Director of the IMS Polymer Program, discussed the latest developments in polymer science.

Dr. George Matheou presents
Dr. Georgios Matheou presents his research at the morning session of the 2003 Annual Meeting

The morning session featured three presentations by IMS faculty members from different departments. Dr. James “Nate” Hohman, Assistant Professor of Chemistry, talked about his research on experimental foundations for next-generation materials and interfaces, and how he uses big science, big data, and big AI to discover new materials for various applications. Dr. Georgios Matheou, Assistant Professor of Mechanical Engineering, presented his work on predictive modeling and simulation of multi-physics flows, and how he collaborates with industry partners in renewable energy, aerospace, and health care sectors. Dr. Vahid Morovati, Assistant Professor of Civil and Environmental Engineering, explained his theoretical framework to model the long-term mechanical behavior of elastomeric materials considering damage accumulation and degradation.

The luncheon session featured a keynote address by Dr. Anne D’Alleva, Provost and Executive Vice President for Academic Affairs, who shared her vision and goals for UConn’s academic excellence and innovation. She also highlighted the importance and impact of materials science and engineering in addressing the global challenges and opportunities in the 21st century. The luncheon concluded with closing remarks by Dr. Paul Nahass.

2023 Annual Meeting Luncheon 2
IMS Director Dr. Steven L. Suib addresses industry partners, faculty, and students at the 2023 Annual Meeting Luncheon

The meeting was attended by more than 100 participants from industry affiliates and external partners along with IMS faculty, students, and alumni. The meeting also showcased the annual Joint Poster Session by IMS Polymer Program and Materials Science and Engineering (MSE) students, demonstrating their projects and achievements in materials science and engineering.  Industry partners were also given tours of core laboratories in the Science 1 building, the new home to IMS.

The IMS Industrial Affiliates Program provides materials characterization services to its industry partners. The program also facilitates collaborations between IMS faculty and students and industry partners on research projects of mutual interest.

The Institute of Materials Science is an interdisciplinary research institution that supports over 100 faculty members from 15 departments across UConn’s schools and colleges. The institute offers advanced degrees in polymer science and materials science, as well as state-of-the-art research facilities for its students and faculty to conduct research that is changing the future of materials science.

Naba Karan Wins DoD DURIP Funding

February 2, 2023

Dr. Naba Karan
Dr. Naba Karan

The U.S. Department of Defense (DoD) awarded four UConn scientists with high-profile grants to fund the acquisition of technology to bolster their research capabilities.

The highly competitive Defense University Research Instrumentation Program (DURIP), offered by the Air Force Office of Scientific Research (AFOSR), the Army Research Office (ARO), and the Office of Naval Research (ONR), funds cutting-edge research projects with potential to assist national defense.

Lithium-ion (Li-ion) batteries are one of the most common rechargeable energy storage technologies on the market. As a rule, they are quite safe under normal operating conditions, powerful, and scalable, from smartphones to electric cars. But given the number of Li-ion batteries produced around the world, their relatively small failure rate has still resulted in some high-profile stories of Li-ion batteries going into thermal runaway – an event when a battery catches fire, explodes, and releases toxic gases.

IMS member Naba Karan, an assistant research professor at the Center for Clean Energy Engineering (C2E2) in the School of Engineering, isn’t surprised.

“You can think of them as bombs,” he says, noting the high quantity of chemical energy contained within Li-ion batteries. And he’s looking to blow them up—on purpose.

With funds from the Office of Naval Research, Karan is constructing a facility at UConn that will explode the batteries in a controlled environment to determine critical safety parameters needed for designing advanced engineering protocols to mitigate thermal runaway events. In a military context, this information will help operators of machinery that depend on these high-powered batteries, such as submarines, determine when internal battery temperatures are exceeding safety thresholds. Most crucially, it will allow them to avoid catastrophic failure by diverting some of this heat.

The equipment will be able to analyze thermal characteristics of all types of energy storage technologies, not only Li-Ion batteries. Since it will be one of the only such facilities in the northeast region, Karan anticipates a high degree of interest and collaboration from other universities and companies looking into studying the safety characteristics of existing and emerging battery chemistries.

IMS Welcomes Mihai “Mishu” Duduta

January 10, 2023

Dr. Mihai Duduta
Dr. Mihai Duduta’s research has the potential to change the future of robotics.

Mihai “Mishu” Duduta has joined the Department of Mechanical Engineering with an appointment in the Institute of Materials Science (IMS).  Having earned his B.S. from MIT, he completed his M.S. and Ph.D. at Harvard University.  Following the completion of his Ph.D., Duduta joined the faculty of the Department of Mechanical and Industrial Engineering at the University of Toronto as an assistant professor.  He is a recipient of the Banting Foundation Discovery Award for 2022 for his research on “Smart Micro-catheters Based on Electro-mechanical Artificial Muscles.”

At the heart of his research “Mishu” (as Duduta prefers to be called) is focused on the science of soft robotics, novel materials, and energy storage.  He seeks to “invent new ways to store energy and deliver power that bring new robotic capabilities.”

IMS News reached out to Dr. Duduta to welcome him and learn more about him and his research.

Your research focus includes novel materials, soft robotics, and energy storage.  All of these are at the cutting edge of future technology.  What led you to pursue this field of science?

I have always been fascinated by energy, and by materials that can act as transducers, effectively transforming one type of energy into another, for example chemical energy stored in covalent bonds of a fuel, to thermal energy, or heat by burning said fuel. I see Robotics as the next area of innovation for energy storage, conversion and harvesting.

You have said that in order for robots to interact more closely with people they must be more compliant, or flexible.  How can the combination of materials, soft robotics, and energy storage achieve this goal and what do you see as the future implications as the science advances?

As machines become smaller or softer, we’ll need to invent new materials and mechanisms for actuation, sensing and computation. The end goal is to replicate nature as closely as possible, in an engineered system. If we have artificial muscles that can effectively replace natural ones, and run as efficiently for long periods of time, we can radically change almost all segments of the economy: from healthcare, to agriculture, manufacturing and beyond.

We are happy to welcome you to UConn IMS.  How did you become interested in UConn and how will you contribute to student success, a key priority for the University?

UConn has a great location, outstanding students, talented faculty, and fantastic infrastructure.  My goal is to train students to be more capable scientists and engineers, but also to develop a strong grasp of how to communicate science effectively, as well as gain an understanding of where their work can bring societal value.

Seth March Joins CAMMA Lab

September 29, 2022

Seth MarchUConn Alum Seth March (’22) has joined the CAMMA Lab as a postdoc.  Seth, earned his Ph.D. this year in Inorganic Chemistry under the advisement of IMS Director Steven L. Suib.  Seth served as a research assistant and a teaching assistant and has extensive experience in materials characterization and data analysis.

Menka Jain is Co-organizer of 28th IWOE

September 23, 2022

Menka Jain
Dr. Menka Jain

The International Workshop on Oxide Electronics (IWOE) series has become an important venue to discuss recent advances and emerging trends in this developing field. The aim of the workshop is to provide an interdisciplinary forum for researchers – theorists as well as experimentalists – on understanding the fundamental electronic and structural properties and also on the design, synthesis, processing, characterization, and applications of (epitaxial) functional oxide materials.

Associate Professor of Physics and Institute of Materials Science (IMS) faculty member Menka Jain is co-organizer of the 28th International IWOE LogoWorkshop on Oxide Electronics (IWOE) to be held October 2-5 in Portland, Maine.  Dr. Jain serves on the program committee with Ryan Comes of Auburn University, Charles H. Ahn of Yale University, and Divine Kumah of North Carolina State University.  She is also the designer of the logo for the workshop (pictured).

The workshop will showcase results of critical scientific importance as well as studies revealing the technological potential of functional oxide thin films to create devices with enhanced performance.  Full abstract book of the talks and posters can be found at https://iwoe28.events.yale.edu/sites/default/files/files/Abstract%20book_draft.pdf.

Menka Jain Receives NSF EAGER Funding

September 16, 2022

Menka Jain
Dr. Menka Jain

NSF EArly-concept Grants for Exploratory Research (EAGER) provide funding for work in its early stages on untested, but potentially transformative, research ideas or approaches.  The work of EAGER grantees is usually considered high-risk, high-reward as it involves radically different approaches, applies new expertise, or engages novel disciplinary or interdisciplinary perspectives.

Associate Professsor of Physics and IMS faculty member, Menka Jain, has been award NSF EAGER funding for her research entitled CRYO: New Quantum Elastocaloric Demagnetization Refrigeration for the Millikelvin Range, which seeks to develop new technology in refrigeration.

Jain explains that, due to the increasing scarcity of helium and lack of portability or scalability of  current technologies, there is a growing demand to develop alternative refrigeration technology that can cool below 1 Kelvin for supporting emerging applications, such as quantum sensors and quantum computers.  The overarching goal of her research is to realize a solid-state millikelvin Quantum Elastocaloric Adiabatic Refrigeration technology in which a cooling cycle will be achieved via periodic application of elastic strain/stress, without or with small a magnetic field.

“Such an approach has the potential to materialize into a groundbreaking discovery for on-chip scalable cooling applications,” Jain explains.

Jain’s research will train a diverse group of students in thermal, material and quantum sciences. This training will be provided through the development of a new curriculum focusing on low temperature cooling in an advanced undergraduate teaching laboratory, in research projects through the McNair program for underrepresented undergraduate students, and through graduate-level research projects.

The research project is jointly supported by the Division of Chemical, Bioengineering, Environmental and Transport Systems and the Division of Materials Research.