George Bollas, a professor in the College of Engineering and IMS faculty member, has been named a 2024-2025 Fulbright Scholar. George, one of five UConn faculty to receive the honor, will be performing research in Greece to investigate the end-to-end feasibility of ammonia as a fuel for the difficult-to-decarbonize transportation sectors. A second focus area of George’s research will be on ammonia cracking and power generation in fuel cells.
Fulbright Scholars are faculty, researchers, administrators, and established professionals teaching or conducting research in affiliation with institutes abroad. Fulbright Scholars engage in cutting-edge research and expand their professional networks, often continuing research collaborations started abroad and laying the groundwork for forging future partnerships between institutions.
Upon returning to their home countries, institutions, labs, and classrooms, they share their stories and often become active supporters of international exchange, inviting foreign scholars to campus and encouraging colleagues and students to go abroad.
Dr. Ki H. Chon, the Krenicki Professor of Biomedical Engineering at the University of Connecticut, is a pioneer in the field of biosignal processing and wearable devices. As the inaugural head of the Biomedical Engineering department from 2014 to 2022, Dr. Chon’s leadership was instrumental in driving substantial growth in both faculty recruitment and research funding, securing a more than $17 million increase in annual research allocations.
Having earned his undergraduate engineering degree from UConn, Dr. Chon has remained dedicated to advancing his alma mater’s stature in the global academic community. His research has led to the development of a life-saving wearable device capable of predicting seizures in divers—a breakthrough that underscores his commitment to translating academic research into practical, real-world applications. This innovation has not only secured the backing of the U.S. Navy but also holds the potential to transform safety protocols in diving operations worldwide.
Dr. Chon’s scholarly contributions are extensive, with an impressive tally of over 220 refereed journal articles and 13 U.S. patents granted, alongside substantial federal research funding totaling more than $29 million. His work on real-time detection of atrial fibrillation and other physiological anomalies via mobile and wearable technology platforms has positioned him at the forefront of biomedical engineering.
Dr. Chon has demonstrated a profound commitment to educational innovation. He has developed three new courses, including Junior Design and Biomedical Signal Processing, which have significantly enhanced the biomedical engineering curriculum at UConn. These courses not only prepare students for real-world engineering challenges but also ensure that they are well-versed in the latest technological advancements and methodologies.
Beyond his technical and academic achievements, Dr. Chon has played a pivotal role in enhancing the department’s diversity and inclusion efforts. His recruitment strategy led to the appointment of UConn’s first female African American Professor in the College of Engineering, marking a significant step forward in fostering an inclusive academic environment.
As a fellow of six major societies and a distinguished member of the Connecticut Academy of Science and Engineering, Dr. Chon’s contributions to the field of biomedical engineering are widely recognized. His leadership and vision have not only elevated the Department of Biomedical Engineering at UConn but have also had a profound impact on the broader scientific and engineering communities.
In recognition of his outstanding contributions to research, teaching, and service, Dr. Ki H. Chon is an exemplary candidate for the Board of Trustees Distinguished Professor award. His ongoing dedication to the field and his alma mater makes him a deserving recipient of this prestigious honor.
NASA Connecticut Space Grant Consortium (CTSGC) is a federally mandated grant, internship, and scholarship program funded as a part of NASA Education. Formed in 1991 by Trinity College, University of Connecticut, University of New Haven, and University of Hartford, NASA CTSGC encourages broader participation in NASA research programs.
Three graduate students from Prof. Mihai “Mishu” Duduta’s group (Dominic Flores, Sahib Sandhu and Alexander White) have won NASA Connecticut Space Consortium Graduate Fellowships of $10,000 each to support research at the interface of soft and space robotics.
Dominic Flores was awarded $10,000 for his research proposal entitled Dielectric Elastomer Actuator Grippers with Sensing Capabilities for Space Applications.
Sahib Sandhu was awarded $10,000 for his research proposal entitled Space ready deployable composites based on compliant capacitors.
Alexander White was awarded $10,000 for his research proposal entitled Spacecraft Landing System using Soft Tunable Tensegrity Structures.
With the support of the Macromolecular, Supramolecular and Nanochemistry program in the National Science Foundation (NSF) Division of Chemistry, Associate Professor of Chemistry and faculty member in the IMS Polymer Program Alexandru D. Asandei, is developing new methods for the precise synthesis of novel fluorinated polymeric materials with complex architectures, as well as exploring the re/upcycling of commercial fluoropolymers.
Fluoropolymers are contrasted to conventional polymers with even simple homo/random fluoropolymers exhibiting outstanding chemical, thermal and flame resistance, biocompatibility, and unique electronic properties which render them important in high-end applications such as battery, aerospace, sensing, medical device, building, construction, and automotive industries. However, the chemical tools for the precise synthesis of analogous complex fluoropolymer materials (blocks, grafts etc.) are lacking. Thus, the project goals include the development of the required novel chemistry, to explore hitherto unknown and unavailable materials with potentially superior properties and applications leading to the associated societal benefits.
While technologically important, fluoropolymers suffer from a number of factors that have hampered new developments. These factors include a combination of very low monomer reactivity, very high propagating polymer chain end reactivity, complex and often hazardous laboratory setups, and the general lack of appropriate polymer chemistry tools (initiators, catalysts, coupling agents etc.). Accordingly, fluoroalkenes remain some of the most challenging monomers for both controlled radical and coordination polymerizations, where manipulation of molecular weight, polydispersity and architecture/sequence are of paramount importance for the emerging properties. In addition, current re/upcycling of industrial fluoropolymers remain minimal.
The proposed research aims at developing innovative and environmentally conscious chemistry (e.g. water, visible light catalysis etc.), to overcome the above deficiencies, and significantly enlarges the fluoro, organic and polymer synthesis toolbox, while providing access to novel fluoropolymer materials. This includes the elaboration of novel, functional, universal radical initiating systems that enable both controlled radical fluoro/regular alkene polymerizations and chain end derivatizations/couplings towards the synthesis of multiblock copolymers, in-depth mechanistic investigations on optimizing polymerization parameters and understanding the structure/property/function in the resulting fluoropolymers, as well as exploration of the coordination polymerization of fluoroalkenes, and the up/recycling of industrial fluoropolymers.
The project provides training and education to undergraduate and graduate students, including minority and female students, in synthetic organic, organometallic, and polymer chemistry. The project also has strong industrial impact, important outreach activities, and the results will be broadly disseminated in the scientific literature and national and international meetings.
from the Department of Materials Science and Engineering
UConn recently received $10.5 million from the Air Force Research Laboratory (AFRL) for research on high-temperature materials and manufacturing processes. The funding will allow a team of seven faculty members from Materials Science and Engineering (Professors Aindow, Alpay, Frame, and Hebert), Civil and Environmental Engineering (Professor Kim), Mechanical Engineering (Professor Bilal), and Chemistry (Professor Suib) along with post-doctoral associates and graduate assistants to address challenges in the manufacturing of aerial systems intended to fly at high speed. Much of the four-year research project will focus on welding-related challenges for high-temperature metallic materials that are used for structures exposed to high speeds. The UConn team will combine experimental and theoretical approaches to help their collaborator, RTX, advance their manufacturing solutions. Additional project tasks address the behavior of non-metallic high-temperature materials under different processing and service conditions, additive manufacturing of high-temperature refractory metals, and the design and processing of metamaterials. These metamaterials are designed to change heat- and electro-magnetic fields in and around structures and are considered to advance the thermal management of high-temperature structures.
The new AFRL project comes at the heels of previous and ongoing AFRL projects for UConn approaching $30 million that involve over 15 faculty members from the Colleges of Engineering and Liberal Arts and Sciences with dozens of graduate students and post-doctoral associates. Covering research from functional materials and photonics to casting, welding, and additive manufacturing, the UConn team has established itself as a valuable partner for the AFRL and key industry partners, for example, Pratt & Whitney and Collins Aerospace.
Professor Rainer Hebert says of the contract, “The AFRL funding enables the UConn team to pursue materials processing research with a strong focus on industry and government relevance. Students and post-doctoral associates working on the project see firsthand how their research translates to industry. This insight will help in preparing a workforce that can pursue research excellence with a keen sense of the needs and constraints of industrial applications.”
Ph.D. student Luis Ortiz’s passion for materials science was ignited during his undergraduate years at the Universidad de Puerto Rico – Humacao, where he was involved in research focused on physics applied to electronics. He revealed, “In my Applied Physics department in Puerto Rico, we have a program mainly focused on materials research. Based on my experience there, I fell in love with the material science field and decided to pursue my graduate studies in this area.”
Ortiz became exposed to the UConn MSE program through various fellowships he applied to throughout his undergraduate years. He revealed, “We didn’t have much information about UConn in Puerto Rico. As a minority student, I decided to apply for fellowship opportunities that could help me succeed in graduate school at universities in the USA. I also applied to this specific program called the Bridge to the Doctorate Louis Stokes Alliance for Minority Participation while I was an undergraduate student. This is a two-year fellowship that helps you bridge between undergraduate and graduate school, and they supported me through the start of my Ph.D. They have a network of universities inside the program, and UConn was one of the listed colleges.”
During the two-year fellowship, Ortiz was introduced to Professor Bryan Huey, who currently heads the MSE department and serves as his advisor. Luis admits feeling supported by Professor Huey and the other department faculty members. He remarked, “Many people here are willing to mentor students and see us become better professionals. My advisor has been one of them.” Ortiz acknowledged the support he receives from MSE faculty members to pursue his dreams and their confidence in his ability to achieve them. “I feel supported and validated in terms of how we pursue our path and work to achieve our goals,” he said.
The Connecticut Academy of Science and Engineering (CASE), an organization of academic and industry professionals who advise the state government on matters of science and industry, announced the election of 35 new members in 2024. Twelve of these new members — over a third — are UConn faculty. Nearly half of those selected from UConn are members of the Institute of Materials Science (IMS).
Bodhisattwa Chaudhuri, Professor, UConn School of Pharmacy
Yupeng Chen, Associate Professor, Biomedical Engineering, UConn College of Engineering
Avinash Dongare, Professor, Materials Science and Engineering, UConn College of Engineering
Liisa T. Kuhn, Professor and Associate Department Head, Biomedical Engineering, UConn Health
David Pierce, Professor, Mechanical, Aerospace and Manufacturing Engineering, UConn College of Engineering
All new members will be introduced at the Academy’s 49th Annual Meeting and Dinner at the Woodwinds in Branford, CT on May 21, 2024. IMS congratulates all the new CASE members.
Before sunrise, Jessica Rouge used to leap out of bed in the glow of darkness and race to the Charles River with her teammates for crew practice.
A few hours later, the future UConn associate chemistry professor would run back to Boston College for her morning science class: she was among a small group of female students pursuing a B.S. degree in biochemistry.
Rouge still sprints, but in a different way: now, she doubles as teacher, mother to two toddlers, mentor to young scientists, hobby musician and soon she will potentially add another role to her repertoire: science entrepreneur.
Rouge’s lab group, which is more than 50 percent female, “seeks to understand how enzymes and nucleic acids can be used in new ways to engineer highly specific and targeted responses in chemical and biological systems. Specifically, her team is interested in developing new chemical strategies for assembling catalytic RNA sequences at nanoparticle surfaces for sensing, diagnostic, and therapeutic applications.”
With the preclinical data she was able to secure using the Spark Fund resources, Rouge is hopeful that she and her collaborators are close to licensing her technology.
While the UConn basketball team moves forward into March Madness, another team of Huskies is hard at work for the love of the game.
One UConn College of Engineering department’s March Madness bracket includes creating the world’s smallest basketball.
Researchers from the materials science and engineering department, housed in the new Science 1 building, has produced a basketball and Husky logo with the best-depth-resolution nanolithography in the world.
“After we determined that our new technique worked, we wanted to do an eye-catching school spirit-related project,” says department head Bryan Huey. “A basketball and the Husky logo seemed to be a perfect way to celebrate UConn. It was fun watching our project gradually (and microscopically) take shape, and we couldn’t be more pleased with the results!”
The pictures were “carved” into a crystalline substrate. Laterally, the patterns are about 4-5 um. For comparison, a human hair is roughly 50 um. And the depth of the engraving is only 5 nm, which is another 1000x smaller than the width. Hence, the world’s smallest basketball was chiseled here in Storrs.
In a collaborative effort, researchers from the University of Connecticut (led by Profs. Yao Lin, VJ Kumar and Xudong Yao) and the University of Illinois at Urbana-Champaign (led by Prof. Jianjun Cheng) have made an advance in the rational design of synthetic polypeptides to develop filament-based hydrogels. The work, conceptualized and realized by the graduate students Tianjian Yang (UConn) and Tianrui Xue (UIUC), has been published in the Journal of the American Chemical Society (JACS) and featured as the cover of the March 6 issue.
Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. The team found that the selection of amino acids steered both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.
The research was supported by NSF grants awarded to Yao Lin at UConn (DMR 1809497 and 2210590) and Jianjun Cheng at UIUC (CHE 1905097).