Year: 2024

Jessica Rouge Empowers Underrepresented Women in Science

Jessica Rouge (far left) with the members of her lab (UConn Photo).

Before sunrise, Jessica Rouge used to leap out of bed in the glow of darkness and race to the Charles River with her teammates for crew practice.  

A few hours later, the future UConn associate chemistry professor would run back to Boston College for her morning science class: she was among a small group of female students pursuing a B.S. degree in biochemistry. 

Rouge still sprints, but in a different way: now, she doubles as teacher, mother to two toddlers, mentor to young scientists, hobby musician and soon she will potentially add another role to her repertoire: science entrepreneur. 

Rouge’s lab group, which is more than 50 percent female, “seeks to understand how enzymes and nucleic acids can be used in new ways to engineer highly specific and targeted responses in chemical and biological systems. Specifically, her team is interested in developing new chemical strategies for assembling catalytic RNA sequences at nanoparticle surfaces for sensing, diagnostic, and therapeutic applications.” 

Rouge was a 2022-2023 recipient of the SPARK Technology Commercialization Fund, a program that helps shepherd the process of translating invention to entrepreneurial success. 

With the preclinical data she was able to secure using the Spark Fund resources, Rouge is hopeful that she and her collaborators are close to licensing her technology. 

Read the full story at UConn Today

The World’s Smallest Basketball, from the Basketball Capital of the World

worlds tiniest basketball
Besides basketball and logos, the technology is used by Huey’s group for their pioneering Tomographic AFM work, studying future semiconductors, solar cells, metal alloys, and electromagnetic sensors—all with unprecedented nano-volumetric resolution.

While the UConn basketball team moves forward into March Madness, another team of Huskies is hard at work for the love of the game. 

One UConn College of Engineering department’s March Madness bracket includes creating the world’s smallest basketball. 

Researchers from the materials science and engineering department, housed in the new Science 1 building, has produced a basketball and Husky logo with the best-depth-resolution nanolithography in the world.  

“After we determined that our new technique worked, we wanted to do an eye-catching school spirit-related project,” says department head Bryan Huey. “A basketball and the Husky logo seemed to be a perfect way to celebrate UConn. It was fun watching our project gradually (and microscopically) take shape, and we couldn’t be more pleased with the results!”

The pictures were “carved” into a crystalline substrate. Laterally, the patterns are about 4-5 um. For comparison, a human hair is roughly 50 um. And the depth of the engraving is only 5 nm, which is another 1000x smaller than the width. Hence, the world’s smallest basketball was chiseled here in Storrs. 

Read the full story at UConn Today

Collaborative Research to Develop Filament-Based Hydrogels is Cover for JACS

Cover of JACS March 6, 2024 issue featuring Yao Lin etal. researchIn a collaborative effort, researchers from the University of Connecticut (led by Profs. Yao Lin, VJ Kumar and Xudong Yao) and the University of Illinois at Urbana-Champaign (led by Prof. Jianjun Cheng) have made an advance in the rational design of synthetic polypeptides to develop filament-based hydrogels. The work, conceptualized and realized by the graduate students Tianjian Yang (UConn) and Tianrui Xue (UIUC), has been published in the Journal of the American Chemical Society (JACS) and featured as the cover of the March 6 issue.

Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. The team found that the selection of amino acids steered both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.

The research was supported by NSF grants awarded to Yao Lin at UConn (DMR 1809497 and 2210590) and Jianjun Cheng at UIUC (CHE 1905097).

IMS Director Discusses Carbon Capture and Impact Mitigation

Dr. Steven L. Suib, Director of UConn’s Institute of Materials Science (IMS), is working to mitigate the effects of greenhouse gasses caused by carbon dioxide (CO2) emissions through carbon capture and conversion.  His work was recently highlighted in a UConn video.  IMS News reached out to Dr. Suib to discuss the impacts of the his research.

Carbon Capture - Gel
Dr. Suib’s research is highlighted in this video produced for UConn Today

How does carbon dioxide (CO2) negatively impact the environment and why is the research you are conducting critical to mitigating the impacts of CO2?

CO2 is a product of combustion from gas burning vehicles, industrial plants, and other sources. Enhanced levels of CO2 are believed to be responsible for global warming and the unusual patterns of weather throughout the world in recent years. We are trying to find ways to trap and gather carbon dioxide and also to transform this into materials that are less hazardous and with practical uses.

You state that CO2 must be trapped (or captured) in order to be converted.  What methodology or methodologies are used to capture CO2 emissions?

There have been many different methods suggested to capture CO2 including physical methods of trapping in porous materials as well as chemical reactions for storage.

Discovering methods of converting CO2 to harmless but useful products requires the introduction of a catalyst to convert the gas. You have conducted extensive and often-cited research in catalysis.  How does this expertise aid in your research? 

The bonds in CO2 are strong and this gas is quite stable. There are many different types of catalysts that we have made. Different reactions are often catalyzed by different catalysts. To find better catalysts they need to be synthesized. The heart of our research programs centers around synthesis of new materials. Unique new materials including catalysts may have different and beneficial properties that commercially available materials do not have.

When you use the term “harmless but useful” in describing products that can be derived from the conversion of CO2, what types of products are possible?

The objective of activating CO2 is to make products that are safe and that can be used in different applications such as new fuels, new chemical feedstocks, and others. These in turn can be used in applications involving sustainable energy, medicines and pharmaceuticals, and new conducting systems (semiconductors, superconductors, batteries, supercapacitors).

It seems we have reached a critical stage in the climate crisis with calls for more research and, above all, action to reduce greenhouse gases and their negative effects.  How urgent is the research you and your students and colleagues are conducting to the mitigation of the climate crisis?  How close is the research to producing measurable outcomes?

The field of capturing and activating CO2 is very active right now, with numerous groups around the world trying to solve problems that would allow CO2 to be eventually used in many different commercial processes. Our work involves a small set of potential materials for capture and activation of CO2. There are measurable improvements in capture and activation. The key will be to push this to the limit so practical processes can be used.