Alumni

Polymer Program Alumni Feature: Mark Adams

By Paige Bjerke
IMS Written Communications Assistant

Mark Adams, '93
Mark Adams, ’93 Polymer Science

Mark Adams received his Ph.D. in Polymer Science from the University of Connecticut in 1993. After an 11-year tenure with Dow Chemical, Adams joined Henry Company in various vice president and senior vice president roles. Following his tenure at Henry Company, Adams joined Associated Materials, acting in senior vice president and later executive vice president positions. Since May of 2023, Adams serves as the Chief Operating Officer of HASA Inc., a large water treatment company based in southern California.

IMS News reached out to Adams with five questions about his breadth of professional experience since obtaining his Ph.D., and how his time at UConn shaped it. Adams shows us that with grit, passion, and a strong support system, career growth occurs naturally.

Why did you choose to pursue your Ph.D. in polymer science at UConn?  

My plan was to go to medical school after completing a B.S. in Chemistry from UConn. While working on my B.S., I took Physical Chemistry with Professor Andrew Garton. One day about halfway through the semester, he approached me after class and asked about what I was going to do after undergrad. I told him I was planning to go to medical school. He asked if I had ever considered grad school.

He went on to talk about an opportunity to go to the Institute of Materials Science for a Ph.D. in Polymer Science, working with him under a grant from NASA. Curious about the opportunity, I went to visit him at IMS, and the rest is history. I changed direction and worked to earn my Ph.D. on a research project for NASA, studying the degradation of polymeric spacecraft materials in the low earth orbit.

Who were some of the people who helped or inspired you most during your time at UConn, and how did their influence carry over into your professional career?

Obviously, Professor Garton had a huge impact on my academic career. He was incredibly energetic and excited about his research, which was infectious in his research group. When he passed away suddenly, prior to me completing my thesis, I was shocked and somewhat lost. My mentor in research was gone, and I was uncertain about the future and the choices I made. Fortunately, Sam Huang took me on to complete my degree.

Dr. Garton and other faculty at IMS taught me the importance of first principles and how to do research, but Dr. Garton is responsible for teaching me how to apply learning.  How to identify a problem, develop root cause, research/develop technology needed, and implement technology solutions. He also helped me develop continuous improvement skills that have become the backbone of my career. Advanced research is interesting and fun but, using that to develop products and solutions is exciting.

A lot of your professional experience is more on the business side rather than in a lab or research setting. How did your Ph.D. and heavy scientific background impact your trajectory for success in so many executive-level corporate roles? 

The first few roles early in my career were focused on technology and product development, which heavily leveraged my Ph.D. Successfully translating these efforts into value-creating opportunities required a complex voice of the customer requirements, which was only obtained and validated through observation and communication with end users. It’s at this interface where my unique skills started to develop, and when my career started taking turns from R&D leadership to new business development, sales, commercial leadership, and operations leadership. I have been fortunate to work with exceptional executive leaders that continually challenged and developed me, which has produced a myriad of different and challenging roles. This would not have been possible without the solid foundation I received from IMS and UConn.

What advice do you have for current polymer science students who may be unsure of their career paths? 

Figure out your “internal” job description as early as possible. In other words, determine what you like to do most in combination with the skills and experience you have developed. When you figure out what your internal job description is, and you find a role that matches, you will experience dramatically accelerated growth. In my case, that was away from pure and applied research, and more focused on deploying all kinds of chemistry and engineering to develop solutions that rapidly grow businesses. Once you figure that out, job opportunities come faster than will be comfortable.

What are you most proud of having accomplished so far in your current position, and what do you most hope to accomplish going forward?

I am currently the Chief Operations Officer at a specialty chemical company specializing in water treatment. This role is truly the culmination of all my years of experience in multiple functions and companies. I am responsible for Operations at 12 sites, Engineering, Product/Process Development, EH&S, Continuous Improvement, Quality, and Transportation.

My biggest accomplishment so far with this company has been successfully restructuring and realigning our engineering group into a segmented portfolio management approach. We had way too many projects, worked on all of them at once, with too few resources, and no prioritization. Everything was delayed and above budget. Now, we are executing on time and on budget across the board on a full spectrum of projects from large new site design-builds, down to site specific capex projects.

My biggest challenge is developing and implementing automation technology in our packaging plants. We still require too much manual labor in an environment that is ergonomically challenging. Also, working with hazardous and corrosive materials poses unique challenges to metals and circuitry, so we needed to develop materials, machines, and now robots that reliably operate in challenging environments with hazardous chemicals. I guess it’s kind of like my Ph.D. work that analyzed polymers in low earth orbit, also a challenging and unforgiving environment.

IMS News thanks Mark Adams very much for his willingness to share his unique journey, and we are excited to see where he takes HASA next.

Institute of Materials Science Alumni Feature: Ayana Ghosh

by Paige Bjerke
IMS Written Communications Assistant

Ayana Ghosh ('20)
Ayana Ghosh, Ph.D. (’20)

Ayana Ghosh received her Ph.D. in Materials Science and Engineering from the University of Connecticut in 2020. Afterwards, she joined the prestigious Oak Ridge National Laboratory (ORNL) of the U.S. Department of Energy as a postdoctoral research associate. In 2023, she moved into a full-time position as a staff scientist. In this role, Ghosh has excelled in her research, having won copious awards, spoken at conferences around the world, and gotten published in multiple peer-reviewed journals.

IMS News reached out to Ghosh with five questions about her current position, her many achievements, and her plans for the future.

***

You have clearly set yourself apart at Oak Ridge, having won various awards in just a few years. What skills do you feel propelled you to such impressive success, and what support systems, either within your research team or elsewhere, have helped you the most, and how?

Success in research is often non-linear. It involves many days when things don’t work out or…challenges I don’t fully understand. However, I’ve learned that the key to progress is being able to formulate a clear and meaningful scientific problem and then break it down into manageable parts. This helps me maintain a steady pace toward achieving the final goal. I believe that embracing new ideas and constantly learning—despite the challenges—are key drivers of growth and innovation. Above all, consistency, determination, and resilience have been essential to my success. Giving my best effort, even in the face of setbacks, has played a key role in driving my progress.

The support of my mentors during my postdoctoral work (September 2020 to February 2023), ongoing encouragement from my group leader at ORNL, along with the valuable feedback, collaboration, and shared knowledge from my colleagues and collaborators at ORNL and across the globe, have been instrumental in navigating challenges and advancing my work. I continue to stay in touch with my graduate school advisors and faculty, whose guidance remains invaluable in shaping my research journey.

I would like to express my deep gratitude to my mother, whose unwavering support has been a constant source of strength throughout my journey. After the sudden passing of my father during the pandemic in 2021, I faced the challenge of navigating both personal loss and the demands of my academic work. Her courage has been an anchor, helping me to persevere through difficult times and stay focused on my goals.

Working for ORNL, part of the U.S. Department of Energy, how do you grapple with the importance and scale of your work, which undoubtedly shapes government policy and affects the wellbeing of America and the world at large? 

The motivation behind my work has always been the desire to address real-world problems, with the hope to contribute to technological advancements and innovations that improve people’s lives. Working at a U.S. Department of Energy lab, I recognize that my work certainly carries significant weight, particularly knowing that it can influence government policy and ultimately affect the wellbeing of individuals not just in America, but globally. I try to focus on the positive change I hope to drive rather than feel overwhelmed by the scale of it.

I’m also constantly supported by a network of colleagues, mentors, and collaborators who keep me grounded. One of the coolest things about being part of a national lab is the opportunity to casually interact with brilliant minds from various fields. Imagine this: taking an afternoon walk around the building where you might bump into a computer scientist, mathematician, or physicist, and get to chat about the problems you’re working on, gaining fresh perspectives and ideas. It’s amazing how these conversations can spark new ways of thinking, often leading to creative solutions. I also remind myself that progress is often incremental—every small step adds up to a bigger picture. Balancing the scale of my work comes from staying connected to the people and principles that matter most and keeping my focus on the long-term goals.

In 2021, you stated that you “hope to better understand the nuances of experimental research as combined with the particulars of theoretical and simulated data.” Have you been able to gain that understanding at this point in your career? If so, to what extent and how does that understanding inform your current work? If not, what do you feel are the barriers to achieving that understanding?

This is still an ongoing process. Much of my postdoctoral and current work has been dedicated to understanding the nuances between experimental research and theoretical/simulated data. We have made significant strides, particularly in autonomous microscopy, developing machine learning workflows to enhance our understanding of experimental data and integrate it with theoretical simulations.

However, challenges remain, particularly around the disparities between time and length scales. Real-time experiments often don’t align perfectly with theoretical approximations. These gaps require more adaptive approaches. I believe addressing these grand challenges will be crucial not only for my work, but also for improving the synergy between experimental and computational methods. This synergy is essential for unlocking new insights and driving innovation in the world of materials and beyond.

Your Ph.D. thesis was based heavily on machine learning, which you still employ frequently in your work at ORNL. What should current students in the field of materials science know about machine learning and AI, and how would that knowledge benefit them? 

For graduate students in materials science, getting comfortable with the basics of ML and AI is crucial. Start by understanding the algorithms, their implementation, and how to apply them to real-world problems. The key is knowing when and how to use these tools, based on solid domain expertise. It’s not just about using fancy algorithms or architectures, it’s about identifying the problems in materials science that can benefit from them. Beyond just applications, there’s also a big opportunity for students to get involved in method development to push the boundaries of what’s possible.

On a broader note, AI is shaking up every field – it’s changing how we teach and learn, too. With AI-assisted teaching, personalized learning, and a wealth of accessible tools, I think we’re on the brink of a classroom revolution. It’s an exciting time. I imagine embracing these changes will only make us all better researchers and learners. So, for students, one piece of advice, don’t just sit back – dive in and start experimenting (in the lab and on the computer)!

With so much recognition already, and new projects going on constantly, what are your goals or specific things you want to achieve over the next 10 years?

Looking ahead, I am committed to pushing the boundaries of my field by advancing technological solutions that tackle some of the world’s most pressing challenges in energy, AI, and quantum technologies. I am particularly excited about the potential of deepening our understanding of the foundational principles of materials physics and bridging theory with real-world experiments. This integration will be crucial in developing practical, scalable solutions that address the evolving challenges in both society and technology.

With an eye on what’s next, my goal is to take on more leadership roles, collaborating with a diverse range of experts across disciplines to drive innovation and create meaningful change. Equally important is my commitment to mentoring young researchers and contributing to the development of the next generation of scientists. At the same time, I recognize the importance of balancing career advancement with maintaining personal well-being, ensuring both professional growth and personal fulfillment.

***
IMS News thanks Dr. Ghosh for taking the time to answer our questions and providing such potent insight into her work. We wish her all the best as she continues her exciting and innovative career journey.

 

Alumnus Christopher Simone Reflects on Career at DuPont

Christopher SimonePolymer Program Alumnus, Dr. Christopher Simone (’02), is featured in an article by the American Chemical Society (ACS).  Simone’s reflection on his 19-year career with DuPont addresses topics such as how to find success in research and development in the public sector.

Chris joined DuPont in 2002 as a research chemist developing new products and processes to support the Kapton® polyimide films and Pyralux® laminates portfolio within the DuPont Interconnect Solutions business. In his 19 year career, he has progressed within the research and development organization developing novel Kapton® films and associated process research for the flexible printed circuit industry.  Read the full ACS article.

Recent Ph.D. Graduate Reflects on Experience as IMS Polymer Program Student

Dr. Deepthi Varghese
Dr. Deepthi Varghese

After completing a Master’s Degree in Biochemistry from St. Josephs Arts & Science College in Bangalore, India, Deepthi Varghese joined the UConn Chemistry graduate program in the fall semester of 2014. After hearing brief research presentations from the chemistry departmental faculty, she became interested in Polymer Science with Prof. Douglas Adamson, an unexpected diversion from her initial plans for a career in biochemistry into a field in which she had no experience.

Although the lack of experience created a steep learning curve, Deepthi embraced this new research direction. While she faced challenges during the first two years, looking back, Deepthi says that she gained far more knowledge than expected, including polymer science, electro chemistry, and setting up scientific research laboratories.

Deepthi also struggled with many challenges regarding science including the fact that experiments are more likely to fail than succeed; science takes far more time than initially expected; and there is never enough time to accomplish everything. Lessons like this can be applied to all aspects of life, business, and art, as well as science.

In addition to the science, Deepthi has increased her knowledge of communications, independent learning, and keeping an open mind to feedback from all sources. She realized that you never know who will have valuable knowledge.

“Keeping an open ear and open mind allows you to learn from faculty, technicians, graduate students, and undergraduate students as well,” Deepthi says. She noted that undergraduates, especially those from outside disciplines, are also able to contribute bits of knowledge to the scientific challenges of the day.

Deepthi became involved with UConn organizations, the South Asia Community (Tarang) and the Graduate School Senate, where she was treasurer and president, respectively. This experience helped her learn organizational leadership.

Looking back on her graduate experience at UConn, Deepthi says that she grew as a scientist as well as a person. She had a number of unexpected experiences that changed her in many ways, all positive. In November, 2019, Deepthi started her professional career as a TD Etch Module Engineer at Intel, Hillsboro, Oregon.