UConn IMS

Nguyen Lab Explores Benefits of Using Microneedle Arrays for Vaccine Delivery

from UConn Today

Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.
Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.

In rural areas, especially in developing countries, the long distance to a medical facility may hinder a population from getting vaccinations, and especially booster doses.

Vaccines—for everything from influenza to COVID-19 to pneumococcal diseases—are stored at a low temperature for stability and are typically administrated through a hypodermic needle and syringe from a health care professional.

“What if we were able to mail people vaccines that don’t need refrigeration and they could apply them to their own skin like a bandage?” asked Thanh Nguyen, associate professor of mechanical engineering and biomedical engineering at the University of Connecticut. “And what if we could easily vaccinate people—once—where they wouldn’t need a booster? We could potentially eradicate polio, measles, rubella, and COVID-19.”

The answer, Nguyen believes, is administrating vaccines through a programmable microneedle array patch with a novel process he is developing at his lab at UConn.

By adhering a nearly painless, 1-centimeter-square biodegradable patch to the skin, a person can receive a preprogrammed delivery of highly-concentrated vaccines in powder form—over months—and eliminate the need for boosters. “The primary argument is that getting vaccines and boosters is a pain,” Nguyen said. “You have to go back two or three times to get these shots. With the microneedle platform, you put it on once, and it’s done. You have your vaccine and you have your boosters. You don’t have to go back to the doctor or hospital.” 

This month, UConn’s Institute of Materials Science received a three-year grant from the Bill & Melinda Gates Foundation to support Nguyen’s research on “Single-Administration Self-boosting Microneedle Platform for Vaccines and Therapeutics.” The project’s goal is to develop a low-cost manufacturing process.  

The Nguyen Research Group has already been working to thermally-stabilize vaccines and other therapeutics so they can stay inside the skin for a long period. In 2020, Nature Biomedical Engineeringpublished a study by Nguyen and his colleagues reporting that, in rats, microneedles loaded with a clinically available vaccine (Prevnar-13) against a bacterium provided similar immune protection as multiple bolus injections.  

“We’ve been able to show this technology is safe and effective in the small animal model, but now the question is, how do we translate it into the commercialized stage and make it useful to the end user, which is the human,” he said.  

With support from the Gates Foundation, Nguyen will be able to test his microneedle platform on a larger animal—a pig, which has skin similar to humans. And if the results are similar, Nguyen predicts this technology could be manufactured, at an affordable cost, enabling both domestic and global health impact.

Nguyen’s microneedle platform also caught the attention of the United States Department of Agriculture. In September, the USDA: Research, Education, and Economics division awarded Nguyen with a two-year grant for a study titled “Delivery of FMDV Protein Antigens Using a Programmable Transdermal Microneedle System.” 

The Foot-and-Mouth Disease Virus (FMDV) is a highly contagious disease that affects the health of livestock such as cows, pigs, sheep, and goats. When an outbreak occurs, the disease leaves affected animals weakened and unable to produce meat and milk. FMDV causes production losses and hardships for farmers and ranchers, and has serious impacts on livestock trade.

And while vaccines exist, like with humans, boosters are required to keep the vaccine effective.   

USDA is interested in the technology because the patch will be able to deliver the initial dose and subsequent doses, or boosters, to animals without the need for rounding up and handling multiple animals at once,” Nguyen explained. “This decreases stress on the animals and increases safety for the animals and their handlers.”

The microneedle platform is among the latest applications the Nguyen Research Group is exploring in the arena of vaccine/drug delivery, tissue regenerative engineering, “smart” piezoelectric materials, electronic implants, and bioelectronics. Since joining the College of Engineering in 2016, Nguyen has discovered a method of sending electric pulses through a biodegradable polymer to assist with cartilage regeneration; he’s designed a powerful biodegradable ultrasound device that could make brain cancers more treatable; and he used microneedle patches to deliver antibody therapies, which have been proven successful in treating HIV, autoimmune disorders such as multiple sclerosis, and certain types of cancer.  

Christina Tamburro, post-award grants and contracts specialist for UConn’s Institute of Materials Science said IMS is grateful to both the Gates Foundation and USDA for supporting Professor Nguyen’s drug delivery research.  

“This is a wonderful application of material science and this is what we’re all about. Ultimately, this is going to save lives and it can’t get better than that,” she said.

Antigoni Konstantinou Receives 2023-2024 GE Fellowship for Excellence

Ph.D. Student Antigoni Konstantinou
IMS Materials Science Program Ph.D. candidate Antigoni Konstantinou

The College of Engineering recently announced the recipients of its General Electric Fellowship for Excellence.  The award was established to recognize the excellence of current graduate students and to facilitate their completion of the Ph.D. program.  Fellows are selected for their outstanding track records in research and professional service in the areas of advanced materials, manufacturing, and energy.  Antigoni Konstantinou, an Institute of Materials Science (IMS) Materials Science Program Ph.D. student, has been named a recipient of this honor.

Ms. Konstantinou has exhibited academic excellence in both research and leadership.  She currently serves as president of the 2023-2024 e-board for the John Lof Leadership Academy (JLLA). From this position, she empowers UConn’s graduate student community by nurturing essential leadership skills, especially for women in STEM. She is also a former Secretary of the UConn Chapter of the Materials Research Society (MRS).

Since joining the IMS Materials Science Ph.D. program in Spring 2021, Antigoni has been working with advisor Prof. Yang Cao and his Electrical Insulation Research Center (EIRC) utilizing materials preparation and electrical engineering techniques to develop nanostructured insulation materials to protect high-voltage electric motors from high electric fields. This research bridges Materials Science with Electrical Engineering.

IMS and the EIRC congratulate Antigoni on this well-deserved honor.

Xueju “Sophie” Wang Receives 2024 ONR Young Investigator Award

Xueju "Sophie" Wang
Dr. Xueju “Sophie” Wamg

Xueju “Sophie” Wang has been awarded an Office of Naval Research (ONR) 2024 Young Investigator Award in the category Ocean Battlespace Sensing.  The Ocean Battlespace Sensing Department of ONR explores science and technology in the areas of oceanographic and meteorological observations, modeling, and prediction in the battlespace environment; submarine detection and classification (anti-submarine warfare); and mine warfare applications for detecting and neutralizing mines in both the ocean and littoral environment.

One of 24 recipients in various categories, Dr. Wang’s research, entitled A Soft Intelligent Robot for Self-digging, Multi-modal Sensing, and In Situ Marine Sediment Analysis, was recognized by the Littoral Geosciences and subcategory.  The Littoral Geosciences and Optics program supports basic and applied research for expeditionary warfare, naval special warfare, mine warfare and antisubmarine warfare in shelf, near-shore, estuarine, riverine, and riparian environments, with a particular emphasis on robust 4D prediction of environmental characteristics in denied, distant or remote environments.

Dr. Wang earned a Ph.D. from Georgia Institute of Technology in 2016.  She joined the faculty of the Materials Science and Engineering Department (MSE) in 2020 with an appointment in the Institute of Materials Science (IMS).  Since then, she has earned extensive recognition for her research including the National Science Foundation (NSF) CAREER award in 2022; the National Institutes of Health (NIH) Trailblazer Award, also in 2022; and the American Society of Mechanical Engineers (ASME) Orr Early Career Award in 2021 among others.

Wang’s research focuses on soft, stimuli-responsive materials and multifunctional structures; multistability of reconfigurable, magnetically responsive structures, flexible/pressure-tolerant/bio-integrated electronics, soft robotics and intelligent systems; and in-situ/environmental operando experimental techniques.  Her research has been published extensively.

 

A Career Worth Celebrating: Dr. Challa V. Kumar

Colleagues, collaborators, family, friends, and former students gathered to celebrate the career of Dr. Challa V. Kumar
Colleagues, collaborators, family, friends, and former students gathered to celebrate the career of Dr. Challa V. Kumar

By the time registration closed for the Symposium Celebrating the Research and Education Legacy of Professor Challa V. Kumar, more than 60 delegates from around the world had registered.  The event, which also celebrated Dr. Kumar’s retirement as well as his 70th birthday, brought together colleagues, collaborators, friends, and former students of Professor Kumar eager to pay homage to him and to present research on the topic for the day, Chemical Approaches to Biological Materials and Beyond.

The full-day event opened on September 9, 2023, with continental breakfast and a welcome message from Dr. Yao Lin, professor of chemistry and Institute of Materials Science (IMS) resident faculty member. Lin also served as chair for the morning session.  IMS Director Dr. Steven L. Suib opened the symposium with remarks that set the tone for the day’s events.

The morning session commenced with Dr. Kumar’s introduction of his longtime friend, Professor and Chief Editor of Science magazine, Holden Thorp. Dr. Thorp emphasized the importance of scientists getting involved in the discussion of societal issues and policies through evidence-based facts. The discussion included science outreach to children, an important topic for all attendees.

Each presentation was preceded by a short introduction from Dr. Kumar, to which he brought a personal connection between himself and each of the presenters. Speakers for the morning session included Professor D. Ramaiah from Birla Institute of Technology, Hyderabad, India. Dr. Kumar and Dr. Ramaiah overlapped at the Indian Institute of Technology Kanpur before Dr. Kumar left for the United States.

Morning session speakers
Morning session presenters (l to r) Drs. Yao Lin (session chair); Dr. D. Ramaiah, Michael Purugganan, Leah Croucher, and J.K. Barton

Professor Michael Purugganan from New York University described his collaboration with Professor Kumar on DNA-mediated electron transfer at Columbia University. He presented research on the ways in which rice genes have co-evolved with humans over thousands of years, with 13,000 varieties identified so far.

Professor Leah Croucher from the National Institutes of Health (NIH), a former Ph.D. student of Professor Kumar, described her path from the Kumar lab to NIH in reverse chronological order, sharing highlights of her days at UConn along the way.

The last speaker of the morning session was Professor J.K. Barton of California Institute of Technology. Dr. Barton, a recipient of the prestigious Priestly Medal, spoke on electron transfer through DNA. Dr. Barton was also a postdoctoral mentor to Professor Kumar. Her talk led to interesting discussions on the electron transport mechanism and how DNA-mediated electron transport plays an important role in DNA damage, repair, and cancer.

Afternoon session symposium speakers
Afternoon Session Speakers (l to r) Drs. Steven L. Suib, James Rusling, Ashis Basu, Rajeswari Kasi, Akhilesh Bhambhani, Ajith Pattammattel, and Anna Pyle

Following lunch, session chair Dr. Rajeswari Kasi, professor of chemistry and IMS resident faculty member, commenced the afternoon session with an introduction of IMS Director and Professor of Chemistry Dr. Steven L. Suib. Professor Suib analyzed the research trajectory of Dr. Kumar over four decades and recounted how the Kumar research group switched gears and meandered through increasingly interesting research topics, building one over the other.

Professor of Chemistry James Rusling spoke about his interactions with Professor Kumar, elaborating on joint and related projects that they often chatted about. Professor of Chemistry Ashis Basu described his research projects on DNA damage, DNA-covalent adducts of carcinogens, and the mechanisms of carcinogenesis. Professor Kasi described some of her most recent work on protein-conjugated cellulose nanocrystals, demonstrating how her work was inspired by her collaborations with Dr. Kumar.  Professor Akhilesh Bhambhani, a former Ph.D. student of Dr. Kumar, outlined the key factors for successful design, manufacturing, and deployment of biologics with humorous comparison of Dr. Kumar to the Bodha tree, which gave enlightenment to those who rested beneath it. Dr. Ajith Pattammattel, another former Ph.D. student of Dr. Kumar, elaborated on his research at the Brookhaven National Laboratory. He invited students and faculty to visit the lab to conduct collaborative advanced scattering experiments with a personal story of the instrumental role Dr. Kumar played in his success.

The penultimate talk of the symposium was given by Professor Anna Pyle, a contemporary of Dr. Kumar during her days as a graduate student at Columbia

University. Dr. Pyle described how her group is deciphering the exquisite structures of multiple states of RNA using Cryoelectron microscopy.

Dr. Challa Kumar was surrounded by family for the event. (l to r) Dr. Kumar’s wife Anupam, Dr. Kumar, his brother Srinivas, sister-in-law Manjula, nephew Sriram, and his wife Keerti

With the last word, Professor Kumar began his plenary talk by thanking his mentors, hosts, and graduate students. He elaborated on the tortuous path taken by his research group, and lessons learned, along the same lines as Professor Suib’s analysis at the beginning of the afternoon session.

The symposium concluded with a standing ovation from the audience, after Dr. Kumar explained how he came to the United States with only $21 and a Ph.D., with no friends or relatives here, and succeeded in achieving his American dream.  Truly a career worth celebrating!

Watch video of the symposium here.

MSE Welcomes Alexander Dupuy to the Department

From the Department of Materials Science & Engineering

Dr. Alexander Dupuy
Dr. Alexander Dupuy

We are excited to welcome our newest faculty member, Alexander Dupuy, who joins our department as an assistant professor this fall with an appointment to the Institute of Materials Science (IMS).

Having received his Ph.D. in mechanical engineering from the University of California, Riverside in 2016, Dupuy went on to work for the University of California, Irvine as a postdoctoral scholar and then as assistant project scientist before joining us here at UConn.

With 16 years of research experience in ceramic processing and synthesis, particularly using Spark Plasma Sintering (SPS), Dupuy makes for an exciting addition to the department. His research interests include materials related to electrifications (such as energy generation, storage/batteries, delivery, and conversion), materials for high temperature and extreme environments, and the processing, properties, and behavior of high entropy ceramics.

Dupuy previously authored 23 scientific publications. He also has significant mentorship experience, guiding 7 Ph.D. students, 11 undergraduate researchers, and 5 senior design students in their work over the past 13 years.

“I am thrilled to become a Husky,” Dupuy tells us. “The MSE department, School of Engineering, and Institute of Materials Science have made UConn a world-renowned institution for materials science scholarship and innovation. I am so pleased to be joining UConn and contributing to its important teaching and research missions.”

Naba Karan Wins DoD DURIP Funding

Dr. Naba Karan
Dr. Naba Karan

The U.S. Department of Defense (DoD) awarded four UConn scientists with high-profile grants to fund the acquisition of technology to bolster their research capabilities.

The highly competitive Defense University Research Instrumentation Program (DURIP), offered by the Air Force Office of Scientific Research (AFOSR), the Army Research Office (ARO), and the Office of Naval Research (ONR), funds cutting-edge research projects with potential to assist national defense.

Lithium-ion (Li-ion) batteries are one of the most common rechargeable energy storage technologies on the market. As a rule, they are quite safe under normal operating conditions, powerful, and scalable, from smartphones to electric cars. But given the number of Li-ion batteries produced around the world, their relatively small failure rate has still resulted in some high-profile stories of Li-ion batteries going into thermal runaway – an event when a battery catches fire, explodes, and releases toxic gases.

IMS member Naba Karan, an assistant research professor at the Center for Clean Energy Engineering (C2E2) in the School of Engineering, isn’t surprised.

“You can think of them as bombs,” he says, noting the high quantity of chemical energy contained within Li-ion batteries. And he’s looking to blow them up—on purpose.

With funds from the Office of Naval Research, Karan is constructing a facility at UConn that will explode the batteries in a controlled environment to determine critical safety parameters needed for designing advanced engineering protocols to mitigate thermal runaway events. In a military context, this information will help operators of machinery that depend on these high-powered batteries, such as submarines, determine when internal battery temperatures are exceeding safety thresholds. Most crucially, it will allow them to avoid catastrophic failure by diverting some of this heat.

The equipment will be able to analyze thermal characteristics of all types of energy storage technologies, not only Li-Ion batteries. Since it will be one of the only such facilities in the northeast region, Karan anticipates a high degree of interest and collaboration from other universities and companies looking into studying the safety characteristics of existing and emerging battery chemistries.

IMS Welcomes Mihai “Mishu” Duduta

Dr. Mihai Duduta
Dr. Mihai Duduta’s research has the potential to change the future of robotics.

Mihai “Mishu” Duduta has joined the Department of Mechanical Engineering with an appointment in the Institute of Materials Science (IMS).  Having earned his B.S. from MIT, he completed his M.S. and Ph.D. at Harvard University.  Following the completion of his Ph.D., Duduta joined the faculty of the Department of Mechanical and Industrial Engineering at the University of Toronto as an assistant professor.  He is a recipient of the Banting Foundation Discovery Award for 2022 for his research on “Smart Micro-catheters Based on Electro-mechanical Artificial Muscles.”

At the heart of his research “Mishu” (as Duduta prefers to be called) is focused on the science of soft robotics, novel materials, and energy storage.  He seeks to “invent new ways to store energy and deliver power that bring new robotic capabilities.”

IMS News reached out to Dr. Duduta to welcome him and learn more about him and his research.

Your research focus includes novel materials, soft robotics, and energy storage.  All of these are at the cutting edge of future technology.  What led you to pursue this field of science?

I have always been fascinated by energy, and by materials that can act as transducers, effectively transforming one type of energy into another, for example chemical energy stored in covalent bonds of a fuel, to thermal energy, or heat by burning said fuel. I see Robotics as the next area of innovation for energy storage, conversion and harvesting.

You have said that in order for robots to interact more closely with people they must be more compliant, or flexible.  How can the combination of materials, soft robotics, and energy storage achieve this goal and what do you see as the future implications as the science advances?

As machines become smaller or softer, we’ll need to invent new materials and mechanisms for actuation, sensing and computation. The end goal is to replicate nature as closely as possible, in an engineered system. If we have artificial muscles that can effectively replace natural ones, and run as efficiently for long periods of time, we can radically change almost all segments of the economy: from healthcare, to agriculture, manufacturing and beyond.

We are happy to welcome you to UConn IMS.  How did you become interested in UConn and how will you contribute to student success, a key priority for the University?

UConn has a great location, outstanding students, talented faculty, and fantastic infrastructure.  My goal is to train students to be more capable scientists and engineers, but also to develop a strong grasp of how to communicate science effectively, as well as gain an understanding of where their work can bring societal value.

Menka Jain is Co-organizer of 28th IWOE

Menka Jain
Dr. Menka Jain

The International Workshop on Oxide Electronics (IWOE) series has become an important venue to discuss recent advances and emerging trends in this developing field. The aim of the workshop is to provide an interdisciplinary forum for researchers – theorists as well as experimentalists – on understanding the fundamental electronic and structural properties and also on the design, synthesis, processing, characterization, and applications of (epitaxial) functional oxide materials.

Associate Professor of Physics and Institute of Materials Science (IMS) faculty member Menka Jain is co-organizer of the 28th International IWOE LogoWorkshop on Oxide Electronics (IWOE) to be held October 2-5 in Portland, Maine.  Dr. Jain serves on the program committee with Ryan Comes of Auburn University, Charles H. Ahn of Yale University, and Divine Kumah of North Carolina State University.  She is also the designer of the logo for the workshop (pictured).

The workshop will showcase results of critical scientific importance as well as studies revealing the technological potential of functional oxide thin films to create devices with enhanced performance.  Full abstract book of the talks and posters can be found at https://iwoe28.events.yale.edu/sites/default/files/files/Abstract%20book_draft.pdf.

Menka Jain Receives NSF EAGER Funding

Menka Jain
Dr. Menka Jain

NSF EArly-concept Grants for Exploratory Research (EAGER) provide funding for work in its early stages on untested, but potentially transformative, research ideas or approaches.  The work of EAGER grantees is usually considered high-risk, high-reward as it involves radically different approaches, applies new expertise, or engages novel disciplinary or interdisciplinary perspectives.

Associate Professsor of Physics and IMS faculty member, Menka Jain, has been award NSF EAGER funding for her research entitled CRYO: New Quantum Elastocaloric Demagnetization Refrigeration for the Millikelvin Range, which seeks to develop new technology in refrigeration.

Jain explains that, due to the increasing scarcity of helium and lack of portability or scalability of  current technologies, there is a growing demand to develop alternative refrigeration technology that can cool below 1 Kelvin for supporting emerging applications, such as quantum sensors and quantum computers.  The overarching goal of her research is to realize a solid-state millikelvin Quantum Elastocaloric Adiabatic Refrigeration technology in which a cooling cycle will be achieved via periodic application of elastic strain/stress, without or with small a magnetic field.

“Such an approach has the potential to materialize into a groundbreaking discovery for on-chip scalable cooling applications,” Jain explains.

Jain’s research will train a diverse group of students in thermal, material and quantum sciences. This training will be provided through the development of a new curriculum focusing on low temperature cooling in an advanced undergraduate teaching laboratory, in research projects through the McNair program for underrepresented undergraduate students, and through graduate-level research projects.

The research project is jointly supported by the Division of Chemical, Bioengineering, Environmental and Transport Systems and the Division of Materials Research.

 

 

 

 

IMS Faculty Members Awarded Internal Funding

The Office of the Vice President for Research (OVPR) offers internal funding for faculty projects that are at critical stages of development.  This funding is provided to serve as high-leverage, strategic investment in outstanding faculty research projects.  The Institute of Materials Science is proud to announce our faculty members who have received internal funding for the 2022-2023 academic year.  We congratulate each of our faculty on their research accomplishments.

Scholarship Facilitation Fund

SFF Fund Awardees
Left to right: Drs. Menka Jain; Ying Li, Na Li, Xiuling Lu, and Helena Silva

Menka Jain, Physics
Workshop: Quantum Matter: Dynamics and Sensor

Ying Li, Mechanical Engineering
Publication in Science Advances, a Premium Open-access Journal for Maximum Impact

Na Li, Pharmaceutical Science
Open access publication: Mechanisms and extent of enhanced passive permeation by colloidal drug particles

Xiuling Lu, Pharmaceutical Science
Imaging Tumor Heterogeneity and the Variations in Nanoparticle Accumulation using Perfluorooctyl Bromide Nanocapsule X-ray Computed Tomography Contrast

Helena Silva, Electrical and Computer Engineering
Circuit Simulation of an Erasable Physical Unclonable Function using a Phase-Change Memory Array

Research Excellence Program

REP Awardees
left to right: Drs. Kelly Burke, Bodhisattwa Chaudhuri, Jie He, Menka Jain, Seok-Woo Lee, James Rusling, Tannin Schmidt, Yi Zhang

Kelly Burke, Chemical and Biomolecular Engineering- $25,000
Implantable Degradable Films for Right-Size Post-Operative Pediatric Pain Control

Bodhisattwa Chaudhuri, Pharmaceutical Science- $49,998.08
Continuous manufacturing (CM) of the biological drug product for pulmonary drug delivery
Co-PIs: Yu Lei, Chemical and Biomolecular Engineering; Yanchao Luo, Nutritional Sciences; Matthew Stuber, Chemical and Biomolecular Engineering

Jie He, Chemistry- $50,363.63
C-H Bond Electroactivation of Nonpolar Organic Substrates in Water: Enzyme-Mediated Reaction Pathways in Microemulsions
Co-PIs: James Rusling, Chemistry

Menka Jain, Physics- $50,000
New approaches for on-chip cooling for applications in electronics and quantum devices
Co-PIs: Ilya Sochnikov, Physics

Seok Woo Lee, Material Science and Engineering- $25,000
Investigation on cryogenic shape memory effects of kinetically frozen ThCr2Si2-structured intermetallic compounds

James Rusling, Chemistry- $50,000
Rapid CRISPR-based blood test for early Alzheimer’s disease
Co-PIs: Breno Diniz, Uconn Health, Center for Aging; Islam Mosa, Chemistry

Tannin Schmidt, Biomedical Engineering- $74,853
Role of Proteoglycan 4 (PRG4) in Inflammatory Bone Loss
Co-PIs: Sun-Kyeong Lee, Medicine; Joseph Lorenzo, Medicine; Kshitiz Gupta, UCHC Biomedical Engineering; Alix Deymier, Biomedical Engineering

Yi Zhang, Biomedical Engineering- $49,863.63
A wireless, battery-free multimodal neural probe for simultaneous neuropharmacology and membrane-free neurochemical sampling in freely moving rodents
Co-PIs: Alexander Jackson, Physiology & Neurobiology; John Salamone, Psychological Sciences; Xudong Yao, Chemistry