UConn IMS Faculty Research

Nguyen Lab Explores Benefits of Using Microneedle Arrays for Vaccine Delivery

from UConn Today

Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.
Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.

In rural areas, especially in developing countries, the long distance to a medical facility may hinder a population from getting vaccinations, and especially booster doses.

Vaccines—for everything from influenza to COVID-19 to pneumococcal diseases—are stored at a low temperature for stability and are typically administrated through a hypodermic needle and syringe from a health care professional.

“What if we were able to mail people vaccines that don’t need refrigeration and they could apply them to their own skin like a bandage?” asked Thanh Nguyen, associate professor of mechanical engineering and biomedical engineering at the University of Connecticut. “And what if we could easily vaccinate people—once—where they wouldn’t need a booster? We could potentially eradicate polio, measles, rubella, and COVID-19.”

The answer, Nguyen believes, is administrating vaccines through a programmable microneedle array patch with a novel process he is developing at his lab at UConn.

By adhering a nearly painless, 1-centimeter-square biodegradable patch to the skin, a person can receive a preprogrammed delivery of highly-concentrated vaccines in powder form—over months—and eliminate the need for boosters. “The primary argument is that getting vaccines and boosters is a pain,” Nguyen said. “You have to go back two or three times to get these shots. With the microneedle platform, you put it on once, and it’s done. You have your vaccine and you have your boosters. You don’t have to go back to the doctor or hospital.” 

This month, UConn’s Institute of Materials Science received a three-year grant from the Bill & Melinda Gates Foundation to support Nguyen’s research on “Single-Administration Self-boosting Microneedle Platform for Vaccines and Therapeutics.” The project’s goal is to develop a low-cost manufacturing process.  

The Nguyen Research Group has already been working to thermally-stabilize vaccines and other therapeutics so they can stay inside the skin for a long period. In 2020, Nature Biomedical Engineeringpublished a study by Nguyen and his colleagues reporting that, in rats, microneedles loaded with a clinically available vaccine (Prevnar-13) against a bacterium provided similar immune protection as multiple bolus injections.  

“We’ve been able to show this technology is safe and effective in the small animal model, but now the question is, how do we translate it into the commercialized stage and make it useful to the end user, which is the human,” he said.  

With support from the Gates Foundation, Nguyen will be able to test his microneedle platform on a larger animal—a pig, which has skin similar to humans. And if the results are similar, Nguyen predicts this technology could be manufactured, at an affordable cost, enabling both domestic and global health impact.

Nguyen’s microneedle platform also caught the attention of the United States Department of Agriculture. In September, the USDA: Research, Education, and Economics division awarded Nguyen with a two-year grant for a study titled “Delivery of FMDV Protein Antigens Using a Programmable Transdermal Microneedle System.” 

The Foot-and-Mouth Disease Virus (FMDV) is a highly contagious disease that affects the health of livestock such as cows, pigs, sheep, and goats. When an outbreak occurs, the disease leaves affected animals weakened and unable to produce meat and milk. FMDV causes production losses and hardships for farmers and ranchers, and has serious impacts on livestock trade.

And while vaccines exist, like with humans, boosters are required to keep the vaccine effective.   

USDA is interested in the technology because the patch will be able to deliver the initial dose and subsequent doses, or boosters, to animals without the need for rounding up and handling multiple animals at once,” Nguyen explained. “This decreases stress on the animals and increases safety for the animals and their handlers.”

The microneedle platform is among the latest applications the Nguyen Research Group is exploring in the arena of vaccine/drug delivery, tissue regenerative engineering, “smart” piezoelectric materials, electronic implants, and bioelectronics. Since joining the College of Engineering in 2016, Nguyen has discovered a method of sending electric pulses through a biodegradable polymer to assist with cartilage regeneration; he’s designed a powerful biodegradable ultrasound device that could make brain cancers more treatable; and he used microneedle patches to deliver antibody therapies, which have been proven successful in treating HIV, autoimmune disorders such as multiple sclerosis, and certain types of cancer.  

Christina Tamburro, post-award grants and contracts specialist for UConn’s Institute of Materials Science said IMS is grateful to both the Gates Foundation and USDA for supporting Professor Nguyen’s drug delivery research.  

“This is a wonderful application of material science and this is what we’re all about. Ultimately, this is going to save lives and it can’t get better than that,” she said.

Wells Named CLAS Associate Dean for Life and Physical Sciences

From UConn Today

Barrett Wells, professor and former department head of physics, joins the College of Liberal Arts and Sciences as the new Associate Dean for Life and Physical Sciences. (Bri Diaz/UConn Photo)
Barrett Wells, professor and former department head of physics, joins the College of Liberal Arts and Sciences as the new Associate Dean for Life and Physical Sciences. (Bri Diaz/UConn Photo)

When Barrett Wells became head of the Department of Physics in 2018, he says his opinion of the department changed.

“It was such an interesting thing, to learn more about what all my colleagues were doing,” the condensed matter physicist says. “I always felt we had a good department but as I learned more details [on colleagues’ research], I thought, ‘Wow, we’re better than I thought we were.’”

Now as Wells, who goes by Barry, joins the College of Liberal Arts and Sciences as the new Associate Dean for Life and Physical Sciences, he expects he’ll experience that all over again.

“Of course, this will be different – broader, and much larger,” he notes. “But I’m looking forward to learning more broadly about all our science departments.”

Wells joined UConn in 1998, following positions at Boeing and Brookhaven National Laboratory. He became department head in 2018, where he met and worked with department heads across the CLAS Division of Life and Physical Sciences.

“Everybody’s grumbling about the same things, or they’re happy about the same things,” he jokes. “I’m hoping that sitting where I am, I can help keep the voices of the people in the departments centered in where we are going and what decisions we make.

“I want to get a clear understanding of what each unit believes their problems and strengths are, and the people involved.”

Wells will oversee the Division of Life and Physical Sciences, which comprises the Departments of Chemistry; Earth Sciences; Ecology and Evolutionary Biology; Geography; Marine Sciences; Molecular and Cell Biology; Mathematics; Physics; Physiology and Neurobiology; Psychological Sciences; Speech, Language, and Hearing Sciences; and Statistics.

“Barry is a thoughtful and experienced scientist and leader, and I’m very happy to have him,” says Ofer Harel, interim dean of the College. “His track record shows that he asks the right questions and really advocates for his faculty and staff.”

Among the unique challenges of the position, Wells says, is ensuring adequate space for laboratory research. He will work closely on these and other issues with Associate Dean for Research and Graduate Affairs Andrew Moiseff, who previously served in Wells’ role.

“Andy is a major part of the reason I decided to apply for this role,” says Wells. “He’s been wonderful to work with. It’s a little scary to try to live up to him.”

Wells says he wants to ensure people have access to resources for both interdisciplinary and disciplinary research. Research and teaching in the disciplines needs to be strong, he says, for interdisciplinary research to be successful.

As the University moves toward replacing its general education requirements – most of which are offered in CLAS – with a common curriculum, Wells anticipates that he and the other CLAS associate deans will work to ensure that the College continues to provide a diverse, liberal education to all UConn students.

“We all know we are trying to create and disseminate knowledge, and I’m looking forward to working with people who keep the core mission of the University in mind,” he says.

Inclusion is also very important to Wells, whose own home field of physics has traditionally lacked representation of women. Data also shows, he notes, that most women scientists have partners who are also scientists, which factors into where they end up making their academic home.

“People come from all over the world to work at UConn, and we have to make that a great choice,” he says. “We want to create situations that are really good for them.”

Although Wells says he has a steep learning curve to surmount, he has found the CLAS offices among the best to work with at the University. He hopes to contribute to the overall success of not just his division, but the College.

“My definition of success is that CLAS departments feel that they are running smoothly and that people are able to do their best work.”

Dr. Cato Laurencin Publishes Breakthrough Report on Rotator Cuff Regeneration Treatment

from UConn Today

Cato Laurencin
Dr. Cato Laurencin

A new way to regenerate muscle could help repair the damaged shoulders of millions of people every year. The technique uses advanced materials to encourage muscle growth in rotator cuff muscles. Dr. Cato Laurencin and his team reported the findings in the Proceedings of the National Academy of Sciences (PNAS) August 8th issue.

Tears of the major tendons in the shoulder joint, commonly called the rotator cuff, are common injuries in adults. Advances in surgery have made ever better rotator cuff repairs possible. But failure rates with surgery can be high.  Now, a team of researchers from the UConn School of Medicine led by Laurencin, a surgeon, engineer and scientist, reports that a graphene/polymer matrix embedded into shoulder muscle can prevent re-tear injuries.

“Most repairs focus on the tendon,” and how to reattach it to the bone most effectively, Laurencin says. “But the real problem is that the muscle degenerates and accumulates fat. With a tear, the muscle shrinks, and the body grows fat in that area instead. When the tendon and muscle are finally reattached surgically to the shoulder bone, the weakened muscle can’t handle normal stresses and the area can be re-injured again.

Dr. Laurencin along with graduate student Nikoo Shemshaki worked with other UConn Connecticut Convergence Institute researchers to develop a polymer mesh infused with nanoplatelets of graphene. When they used it to repair the shoulders of rats who had chronic rotator cuff tears with muscle atrophy, the muscle grew back. When they tried growing muscle on the mesh in a petri dish in the lab, they found the material seemed to encourage the growth of myotubes, precursors of muscle, and discourage the formation of fat.

“This is really a potential breakthrough treatment for tears of the rotator cuff. It addresses the real problem: muscle degeneration and fat accumulation,” Laurencin says.

The next step in their work is studying the matrix in a large animal. The team looks forward to developing the technology in humans.

This work was funded by NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant No. DP1AR068147 and National Science Foundation Emerging Frontiers in Research and Innovation Grant No. 1332329.