IMS Faculty Members

Ki Chon Named Board of Directors Distinguished Professor

Ki Chon
Dr. Ki Chon

Dr. Ki H. Chon, the Krenicki Professor of Biomedical Engineering at the University of Connecticut, is a pioneer in the field of biosignal processing and wearable devices. As the inaugural head of the Biomedical Engineering department from 2014 to 2022, Dr. Chon’s leadership was instrumental in driving substantial growth in both faculty recruitment and research funding, securing a more than $17 million increase in annual research allocations.

Having earned his undergraduate engineering degree from UConn, Dr. Chon has remained dedicated to advancing his alma mater’s stature in the global academic community. His research has led to the development of a life-saving wearable device capable of predicting seizures in divers—a breakthrough that underscores his commitment to translating academic research into practical, real-world applications. This innovation has not only secured the backing of the U.S. Navy but also holds the potential to transform safety protocols in diving operations worldwide.

Dr. Chon’s scholarly contributions are extensive, with an impressive tally of over 220 refereed journal articles and 13 U.S. patents granted, alongside substantial federal research funding totaling more than $29 million. His work on real-time detection of atrial fibrillation and other physiological anomalies via mobile and wearable technology platforms has positioned him at the forefront of biomedical engineering.

Dr. Chon has demonstrated a profound commitment to educational innovation. He has developed three new courses, including Junior Design and Biomedical Signal Processing, which have significantly enhanced the biomedical engineering curriculum at UConn. These courses not only prepare students for real-world engineering challenges but also ensure that they are well-versed in the latest technological advancements and methodologies.

Beyond his technical and academic achievements, Dr. Chon has played a pivotal role in enhancing the department’s diversity and inclusion efforts. His recruitment strategy led to the appointment of UConn’s first female African American Professor in the College of Engineering, marking a significant step forward in fostering an inclusive academic environment.

As a fellow of six major societies and a distinguished member of the Connecticut Academy of Science and Engineering, Dr. Chon’s contributions to the field of biomedical engineering are widely recognized. His leadership and vision have not only elevated the Department of Biomedical Engineering at UConn but have also had a profound impact on the broader scientific and engineering communities.

In recognition of his outstanding contributions to research, teaching, and service, Dr. Ki H. Chon is an exemplary candidate for the Board of Trustees Distinguished Professor award. His ongoing dedication to the field and his alma mater makes him a deserving recipient of this prestigious honor.

Alex Asandei Awarded 6th Consecutive Single-PI NSF Grant

Alexandru Asandei
Dr. Alexandru Asandei

With the support of the Macromolecular, Supramolecular and Nanochemistry program in the National Science Foundation (NSF) Division of Chemistry, Associate Professor of Chemistry and faculty member in the IMS Polymer Program Alexandru D. Asandei,  is developing new methods for the precise synthesis of novel fluorinated polymeric materials with complex architectures, as well as exploring the re/upcycling of commercial fluoropolymers.

Fluoropolymers are contrasted to conventional polymers with even simple homo/random fluoropolymers exhibiting outstanding chemical, thermal and flame resistance, biocompatibility, and unique electronic properties which render them important in high-end applications such as battery, aerospace, sensing, medical device, building, construction, and automotive industries. However, the chemical tools for the precise synthesis of analogous complex fluoropolymer materials (blocks, grafts etc.) are lacking. Thus, the project goals include the development of the required novel chemistry, to explore hitherto unknown and unavailable materials with potentially superior properties and applications leading to the associated societal benefits.

While technologically important, fluoropolymers suffer from a number of factors that have hampered new developments. These factors include a combination of very low monomer reactivity, very high propagating polymer chain end reactivity, complex and often hazardous laboratory setups, and the general lack of appropriate polymer chemistry tools (initiators, catalysts, coupling agents etc.). Accordingly, fluoroalkenes remain some of the most challenging monomers for both controlled radical and coordination polymerizations, where manipulation of molecular weight, polydispersity and architecture/sequence are of paramount importance for the emerging properties. In addition, current re/upcycling of industrial fluoropolymers remain minimal.

The proposed research aims at developing innovative and environmentally conscious chemistry (e.g. water, visible light catalysis etc.), to overcome the above deficiencies, and significantly enlarges the fluoro, organic and polymer synthesis toolbox, while providing access to novel fluoropolymer materials. This includes the elaboration of novel, functional, universal radical initiating systems that enable both controlled radical fluoro/regular alkene polymerizations and chain end derivatizations/couplings towards the synthesis of multiblock copolymers, in-depth mechanistic investigations on optimizing polymerization parameters and understanding the structure/property/function in the resulting fluoropolymers, as well as exploration of the coordination polymerization of fluoroalkenes, and the up/recycling of industrial fluoropolymers.

The project provides training and education to undergraduate and graduate students, including minority and female students, in synthetic organic, organometallic, and polymer chemistry. The project also has strong industrial impact, important outreach activities, and the results will be broadly disseminated in the scientific literature and national and international meetings.

UConn Signs Contract With Air Force Research Laboratory

from the Department of Materials Science and Engineering

A robotic welding arms in operation.
A robotic welding arms in operation.

UConn recently received $10.5 million from the Air Force Research Laboratory (AFRL) for research on high-temperature materials and manufacturing processes. The funding will allow a team of seven faculty members from Materials Science and Engineering (Professors Aindow, Alpay, Frame, and Hebert), Civil and Environmental Engineering (Professor Kim), Mechanical Engineering (Professor Bilal), and Chemistry (Professor Suib) along with post-doctoral associates and graduate assistants to address challenges in the manufacturing of aerial systems intended to fly at high speed. Much of the four-year research project will focus on welding-related challenges for high-temperature metallic materials that are used for structures exposed to high speeds. The UConn team will combine experimental and theoretical approaches to help their collaborator, RTX, advance their manufacturing solutions. Additional project tasks address the behavior of non-metallic high-temperature materials under different processing and service conditions, additive manufacturing of high-temperature refractory metals, and the design and processing of metamaterials. These metamaterials are designed to change heat- and electro-magnetic fields in and around structures and are considered to advance the thermal management of high-temperature structures.

The new AFRL project comes at the heels of previous and ongoing AFRL projects for UConn approaching $30 million that involve over 15 faculty members from the Colleges of Engineering and Liberal Arts and Sciences with dozens of graduate students and post-doctoral associates. Covering research from functional materials and photonics to casting, welding, and additive manufacturing, the UConn team has established itself as a valuable partner for the AFRL and key industry partners, for example, Pratt & Whitney and Collins Aerospace.

Professor Rainer Hebert says of the contract, “The AFRL funding enables the UConn team to pursue materials processing research with a strong focus on industry and government relevance. Students and post-doctoral associates working on the project see firsthand how their research translates to industry. This insight will help in preparing a workforce that can pursue research excellence with a keen sense of the needs and constraints of industrial applications.”

12 UConn Faculty Elected to CASE

CASE 2024 new members from IMS
(l to r) Drs. Bodhisattwa Chaudhuri, Yupeng Chen, Avinash Dongare, Liisa T. Kuhn, and David Pierce are among the 12 UConn faculty selected as members of CASE for 2024.

The Connecticut Academy of Science and Engineering (CASE), an organization of academic and industry professionals who advise the state government on matters of science and industry, announced the election of 35 new members in 2024. Twelve of these new members — over a third — are UConn faculty. Nearly half of those selected from UConn are members of the Institute of Materials Science (IMS).

  • Bodhisattwa Chaudhuri, Professor, UConn School of Pharmacy
  • Yupeng Chen, Associate Professor, Biomedical Engineering, UConn College of Engineering
  • Avinash Dongare, Professor, Materials Science and Engineering, UConn College of Engineering 
  • Liisa T. Kuhn, Professor and Associate Department Head, Biomedical Engineering, UConn Health 
  • David Pierce, Professor, Mechanical, Aerospace and Manufacturing Engineering, UConn College of Engineering

All new members will be introduced at the Academy’s 49th Annual Meeting and Dinner at the Woodwinds in Branford, CT on May 21, 2024. IMS congratulates all the new CASE members.

Read the full story at UConn Today

Jessica Rouge Empowers Underrepresented Women in Science

Jessica Rouge (far left) with the members of her lab (UConn Photo).

Before sunrise, Jessica Rouge used to leap out of bed in the glow of darkness and race to the Charles River with her teammates for crew practice.  

A few hours later, the future UConn associate chemistry professor would run back to Boston College for her morning science class: she was among a small group of female students pursuing a B.S. degree in biochemistry. 

Rouge still sprints, but in a different way: now, she doubles as teacher, mother to two toddlers, mentor to young scientists, hobby musician and soon she will potentially add another role to her repertoire: science entrepreneur. 

Rouge’s lab group, which is more than 50 percent female, “seeks to understand how enzymes and nucleic acids can be used in new ways to engineer highly specific and targeted responses in chemical and biological systems. Specifically, her team is interested in developing new chemical strategies for assembling catalytic RNA sequences at nanoparticle surfaces for sensing, diagnostic, and therapeutic applications.” 

Rouge was a 2022-2023 recipient of the SPARK Technology Commercialization Fund, a program that helps shepherd the process of translating invention to entrepreneurial success. 

With the preclinical data she was able to secure using the Spark Fund resources, Rouge is hopeful that she and her collaborators are close to licensing her technology. 

Read the full story at UConn Today

The World’s Smallest Basketball, from the Basketball Capital of the World

worlds tiniest basketball
Besides basketball and logos, the technology is used by Huey’s group for their pioneering Tomographic AFM work, studying future semiconductors, solar cells, metal alloys, and electromagnetic sensors—all with unprecedented nano-volumetric resolution.

While the UConn basketball team moves forward into March Madness, another team of Huskies is hard at work for the love of the game. 

One UConn College of Engineering department’s March Madness bracket includes creating the world’s smallest basketball. 

Researchers from the materials science and engineering department, housed in the new Science 1 building, has produced a basketball and Husky logo with the best-depth-resolution nanolithography in the world.  

“After we determined that our new technique worked, we wanted to do an eye-catching school spirit-related project,” says department head Bryan Huey. “A basketball and the Husky logo seemed to be a perfect way to celebrate UConn. It was fun watching our project gradually (and microscopically) take shape, and we couldn’t be more pleased with the results!”

The pictures were “carved” into a crystalline substrate. Laterally, the patterns are about 4-5 um. For comparison, a human hair is roughly 50 um. And the depth of the engraving is only 5 nm, which is another 1000x smaller than the width. Hence, the world’s smallest basketball was chiseled here in Storrs. 

Read the full story at UConn Today

IMS Director Discusses Carbon Capture and Impact Mitigation

Dr. Steven L. Suib, Director of UConn’s Institute of Materials Science (IMS), is working to mitigate the effects of greenhouse gasses caused by carbon dioxide (CO2) emissions through carbon capture and conversion.  His work was recently highlighted in a UConn video.  IMS News reached out to Dr. Suib to discuss the impacts of the his research.

Carbon Capture - Gel
Dr. Suib’s research is highlighted in this video produced for UConn Today

How does carbon dioxide (CO2) negatively impact the environment and why is the research you are conducting critical to mitigating the impacts of CO2?

CO2 is a product of combustion from gas burning vehicles, industrial plants, and other sources. Enhanced levels of CO2 are believed to be responsible for global warming and the unusual patterns of weather throughout the world in recent years. We are trying to find ways to trap and gather carbon dioxide and also to transform this into materials that are less hazardous and with practical uses.

You state that CO2 must be trapped (or captured) in order to be converted.  What methodology or methodologies are used to capture CO2 emissions?

There have been many different methods suggested to capture CO2 including physical methods of trapping in porous materials as well as chemical reactions for storage.

Discovering methods of converting CO2 to harmless but useful products requires the introduction of a catalyst to convert the gas. You have conducted extensive and often-cited research in catalysis.  How does this expertise aid in your research? 

The bonds in CO2 are strong and this gas is quite stable. There are many different types of catalysts that we have made. Different reactions are often catalyzed by different catalysts. To find better catalysts they need to be synthesized. The heart of our research programs centers around synthesis of new materials. Unique new materials including catalysts may have different and beneficial properties that commercially available materials do not have.

When you use the term “harmless but useful” in describing products that can be derived from the conversion of CO2, what types of products are possible?

The objective of activating CO2 is to make products that are safe and that can be used in different applications such as new fuels, new chemical feedstocks, and others. These in turn can be used in applications involving sustainable energy, medicines and pharmaceuticals, and new conducting systems (semiconductors, superconductors, batteries, supercapacitors).

It seems we have reached a critical stage in the climate crisis with calls for more research and, above all, action to reduce greenhouse gases and their negative effects.  How urgent is the research you and your students and colleagues are conducting to the mitigation of the climate crisis?  How close is the research to producing measurable outcomes?

The field of capturing and activating CO2 is very active right now, with numerous groups around the world trying to solve problems that would allow CO2 to be eventually used in many different commercial processes. Our work involves a small set of potential materials for capture and activation of CO2. There are measurable improvements in capture and activation. The key will be to push this to the limit so practical processes can be used.

Nguyen Lab Explores Benefits of Using Microneedle Arrays for Vaccine Delivery

from UConn Today

Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.
Thanh Nguyen, center, is pictured here with members of his 2022-23 lab.

In rural areas, especially in developing countries, the long distance to a medical facility may hinder a population from getting vaccinations, and especially booster doses.

Vaccines—for everything from influenza to COVID-19 to pneumococcal diseases—are stored at a low temperature for stability and are typically administrated through a hypodermic needle and syringe from a health care professional.

“What if we were able to mail people vaccines that don’t need refrigeration and they could apply them to their own skin like a bandage?” asked Thanh Nguyen, associate professor of mechanical engineering and biomedical engineering at the University of Connecticut. “And what if we could easily vaccinate people—once—where they wouldn’t need a booster? We could potentially eradicate polio, measles, rubella, and COVID-19.”

The answer, Nguyen believes, is administrating vaccines through a programmable microneedle array patch with a novel process he is developing at his lab at UConn.

By adhering a nearly painless, 1-centimeter-square biodegradable patch to the skin, a person can receive a preprogrammed delivery of highly-concentrated vaccines in powder form—over months—and eliminate the need for boosters. “The primary argument is that getting vaccines and boosters is a pain,” Nguyen said. “You have to go back two or three times to get these shots. With the microneedle platform, you put it on once, and it’s done. You have your vaccine and you have your boosters. You don’t have to go back to the doctor or hospital.” 

This month, UConn’s Institute of Materials Science received a three-year grant from the Bill & Melinda Gates Foundation to support Nguyen’s research on “Single-Administration Self-boosting Microneedle Platform for Vaccines and Therapeutics.” The project’s goal is to develop a low-cost manufacturing process.  

The Nguyen Research Group has already been working to thermally-stabilize vaccines and other therapeutics so they can stay inside the skin for a long period. In 2020, Nature Biomedical Engineeringpublished a study by Nguyen and his colleagues reporting that, in rats, microneedles loaded with a clinically available vaccine (Prevnar-13) against a bacterium provided similar immune protection as multiple bolus injections.  

“We’ve been able to show this technology is safe and effective in the small animal model, but now the question is, how do we translate it into the commercialized stage and make it useful to the end user, which is the human,” he said.  

With support from the Gates Foundation, Nguyen will be able to test his microneedle platform on a larger animal—a pig, which has skin similar to humans. And if the results are similar, Nguyen predicts this technology could be manufactured, at an affordable cost, enabling both domestic and global health impact.

Nguyen’s microneedle platform also caught the attention of the United States Department of Agriculture. In September, the USDA: Research, Education, and Economics division awarded Nguyen with a two-year grant for a study titled “Delivery of FMDV Protein Antigens Using a Programmable Transdermal Microneedle System.” 

The Foot-and-Mouth Disease Virus (FMDV) is a highly contagious disease that affects the health of livestock such as cows, pigs, sheep, and goats. When an outbreak occurs, the disease leaves affected animals weakened and unable to produce meat and milk. FMDV causes production losses and hardships for farmers and ranchers, and has serious impacts on livestock trade.

And while vaccines exist, like with humans, boosters are required to keep the vaccine effective.   

USDA is interested in the technology because the patch will be able to deliver the initial dose and subsequent doses, or boosters, to animals without the need for rounding up and handling multiple animals at once,” Nguyen explained. “This decreases stress on the animals and increases safety for the animals and their handlers.”

The microneedle platform is among the latest applications the Nguyen Research Group is exploring in the arena of vaccine/drug delivery, tissue regenerative engineering, “smart” piezoelectric materials, electronic implants, and bioelectronics. Since joining the College of Engineering in 2016, Nguyen has discovered a method of sending electric pulses through a biodegradable polymer to assist with cartilage regeneration; he’s designed a powerful biodegradable ultrasound device that could make brain cancers more treatable; and he used microneedle patches to deliver antibody therapies, which have been proven successful in treating HIV, autoimmune disorders such as multiple sclerosis, and certain types of cancer.  

Christina Tamburro, post-award grants and contracts specialist for UConn’s Institute of Materials Science said IMS is grateful to both the Gates Foundation and USDA for supporting Professor Nguyen’s drug delivery research.  

“This is a wonderful application of material science and this is what we’re all about. Ultimately, this is going to save lives and it can’t get better than that,” she said.

Xueju “Sophie” Wang Receives 2024 ONR Young Investigator Award

Xueju "Sophie" Wang
Dr. Xueju “Sophie” Wamg

Xueju “Sophie” Wang has been awarded an Office of Naval Research (ONR) 2024 Young Investigator Award in the category Ocean Battlespace Sensing.  The Ocean Battlespace Sensing Department of ONR explores science and technology in the areas of oceanographic and meteorological observations, modeling, and prediction in the battlespace environment; submarine detection and classification (anti-submarine warfare); and mine warfare applications for detecting and neutralizing mines in both the ocean and littoral environment.

One of 24 recipients in various categories, Dr. Wang’s research, entitled A Soft Intelligent Robot for Self-digging, Multi-modal Sensing, and In Situ Marine Sediment Analysis, was recognized by the Littoral Geosciences and subcategory.  The Littoral Geosciences and Optics program supports basic and applied research for expeditionary warfare, naval special warfare, mine warfare and antisubmarine warfare in shelf, near-shore, estuarine, riverine, and riparian environments, with a particular emphasis on robust 4D prediction of environmental characteristics in denied, distant or remote environments.

Dr. Wang earned a Ph.D. from Georgia Institute of Technology in 2016.  She joined the faculty of the Materials Science and Engineering Department (MSE) in 2020 with an appointment in the Institute of Materials Science (IMS).  Since then, she has earned extensive recognition for her research including the National Science Foundation (NSF) CAREER award in 2022; the National Institutes of Health (NIH) Trailblazer Award, also in 2022; and the American Society of Mechanical Engineers (ASME) Orr Early Career Award in 2021 among others.

Wang’s research focuses on soft, stimuli-responsive materials and multifunctional structures; multistability of reconfigurable, magnetically responsive structures, flexible/pressure-tolerant/bio-integrated electronics, soft robotics and intelligent systems; and in-situ/environmental operando experimental techniques.  Her research has been published extensively.

 

A Career Worth Celebrating: Dr. Challa V. Kumar

Colleagues, collaborators, family, friends, and former students gathered to celebrate the career of Dr. Challa V. Kumar
Colleagues, collaborators, family, friends, and former students gathered to celebrate the career of Dr. Challa V. Kumar

By the time registration closed for the Symposium Celebrating the Research and Education Legacy of Professor Challa V. Kumar, more than 60 delegates from around the world had registered.  The event, which also celebrated Dr. Kumar’s retirement as well as his 70th birthday, brought together colleagues, collaborators, friends, and former students of Professor Kumar eager to pay homage to him and to present research on the topic for the day, Chemical Approaches to Biological Materials and Beyond.

The full-day event opened on September 9, 2023, with continental breakfast and a welcome message from Dr. Yao Lin, professor of chemistry and Institute of Materials Science (IMS) resident faculty member. Lin also served as chair for the morning session.  IMS Director Dr. Steven L. Suib opened the symposium with remarks that set the tone for the day’s events.

The morning session commenced with Dr. Kumar’s introduction of his longtime friend, Professor and Chief Editor of Science magazine, Holden Thorp. Dr. Thorp emphasized the importance of scientists getting involved in the discussion of societal issues and policies through evidence-based facts. The discussion included science outreach to children, an important topic for all attendees.

Each presentation was preceded by a short introduction from Dr. Kumar, to which he brought a personal connection between himself and each of the presenters. Speakers for the morning session included Professor D. Ramaiah from Birla Institute of Technology, Hyderabad, India. Dr. Kumar and Dr. Ramaiah overlapped at the Indian Institute of Technology Kanpur before Dr. Kumar left for the United States.

Morning session speakers
Morning session presenters (l to r) Drs. Yao Lin (session chair); Dr. D. Ramaiah, Michael Purugganan, Leah Croucher, and J.K. Barton

Professor Michael Purugganan from New York University described his collaboration with Professor Kumar on DNA-mediated electron transfer at Columbia University. He presented research on the ways in which rice genes have co-evolved with humans over thousands of years, with 13,000 varieties identified so far.

Professor Leah Croucher from the National Institutes of Health (NIH), a former Ph.D. student of Professor Kumar, described her path from the Kumar lab to NIH in reverse chronological order, sharing highlights of her days at UConn along the way.

The last speaker of the morning session was Professor J.K. Barton of California Institute of Technology. Dr. Barton, a recipient of the prestigious Priestly Medal, spoke on electron transfer through DNA. Dr. Barton was also a postdoctoral mentor to Professor Kumar. Her talk led to interesting discussions on the electron transport mechanism and how DNA-mediated electron transport plays an important role in DNA damage, repair, and cancer.

Afternoon session symposium speakers
Afternoon Session Speakers (l to r) Drs. Steven L. Suib, James Rusling, Ashis Basu, Rajeswari Kasi, Akhilesh Bhambhani, Ajith Pattammattel, and Anna Pyle

Following lunch, session chair Dr. Rajeswari Kasi, professor of chemistry and IMS resident faculty member, commenced the afternoon session with an introduction of IMS Director and Professor of Chemistry Dr. Steven L. Suib. Professor Suib analyzed the research trajectory of Dr. Kumar over four decades and recounted how the Kumar research group switched gears and meandered through increasingly interesting research topics, building one over the other.

Professor of Chemistry James Rusling spoke about his interactions with Professor Kumar, elaborating on joint and related projects that they often chatted about. Professor of Chemistry Ashis Basu described his research projects on DNA damage, DNA-covalent adducts of carcinogens, and the mechanisms of carcinogenesis. Professor Kasi described some of her most recent work on protein-conjugated cellulose nanocrystals, demonstrating how her work was inspired by her collaborations with Dr. Kumar.  Professor Akhilesh Bhambhani, a former Ph.D. student of Dr. Kumar, outlined the key factors for successful design, manufacturing, and deployment of biologics with humorous comparison of Dr. Kumar to the Bodha tree, which gave enlightenment to those who rested beneath it. Dr. Ajith Pattammattel, another former Ph.D. student of Dr. Kumar, elaborated on his research at the Brookhaven National Laboratory. He invited students and faculty to visit the lab to conduct collaborative advanced scattering experiments with a personal story of the instrumental role Dr. Kumar played in his success.

The penultimate talk of the symposium was given by Professor Anna Pyle, a contemporary of Dr. Kumar during her days as a graduate student at Columbia

University. Dr. Pyle described how her group is deciphering the exquisite structures of multiple states of RNA using Cryoelectron microscopy.

Dr. Challa Kumar was surrounded by family for the event. (l to r) Dr. Kumar’s wife Anupam, Dr. Kumar, his brother Srinivas, sister-in-law Manjula, nephew Sriram, and his wife Keerti

With the last word, Professor Kumar began his plenary talk by thanking his mentors, hosts, and graduate students. He elaborated on the tortuous path taken by his research group, and lessons learned, along the same lines as Professor Suib’s analysis at the beginning of the afternoon session.

The symposium concluded with a standing ovation from the audience, after Dr. Kumar explained how he came to the United States with only $21 and a Ph.D., with no friends or relatives here, and succeeded in achieving his American dream.  Truly a career worth celebrating!

Watch video of the symposium here.