Institute of Materials Science

Institute of Materials Science Alumni Feature: Ayana Ghosh

by Paige Bjerke
IMS Written Communications Assistant

Ayana Ghosh ('20)
Ayana Ghosh, Ph.D. (’20)

Ayana Ghosh received her Ph.D. in Materials Science and Engineering from the University of Connecticut in 2020. Afterwards, she joined the prestigious Oak Ridge National Laboratory (ORNL) of the U.S. Department of Energy as a postdoctoral research associate. In 2023, she moved into a full-time position as a staff scientist. In this role, Ghosh has excelled in her research, having won copious awards, spoken at conferences around the world, and gotten published in multiple peer-reviewed journals.

IMS News reached out to Ghosh with five questions about her current position, her many achievements, and her plans for the future.

***

You have clearly set yourself apart at Oak Ridge, having won various awards in just a few years. What skills do you feel propelled you to such impressive success, and what support systems, either within your research team or elsewhere, have helped you the most, and how?

Success in research is often non-linear. It involves many days when things don’t work out or…challenges I don’t fully understand. However, I’ve learned that the key to progress is being able to formulate a clear and meaningful scientific problem and then break it down into manageable parts. This helps me maintain a steady pace toward achieving the final goal. I believe that embracing new ideas and constantly learning—despite the challenges—are key drivers of growth and innovation. Above all, consistency, determination, and resilience have been essential to my success. Giving my best effort, even in the face of setbacks, has played a key role in driving my progress.

The support of my mentors during my postdoctoral work (September 2020 to February 2023), ongoing encouragement from my group leader at ORNL, along with the valuable feedback, collaboration, and shared knowledge from my colleagues and collaborators at ORNL and across the globe, have been instrumental in navigating challenges and advancing my work. I continue to stay in touch with my graduate school advisors and faculty, whose guidance remains invaluable in shaping my research journey.

I would like to express my deep gratitude to my mother, whose unwavering support has been a constant source of strength throughout my journey. After the sudden passing of my father during the pandemic in 2021, I faced the challenge of navigating both personal loss and the demands of my academic work. Her courage has been an anchor, helping me to persevere through difficult times and stay focused on my goals.

Working for ORNL, part of the U.S. Department of Energy, how do you grapple with the importance and scale of your work, which undoubtedly shapes government policy and affects the wellbeing of America and the world at large? 

The motivation behind my work has always been the desire to address real-world problems, with the hope to contribute to technological advancements and innovations that improve people’s lives. Working at a U.S. Department of Energy lab, I recognize that my work certainly carries significant weight, particularly knowing that it can influence government policy and ultimately affect the wellbeing of individuals not just in America, but globally. I try to focus on the positive change I hope to drive rather than feel overwhelmed by the scale of it.

I’m also constantly supported by a network of colleagues, mentors, and collaborators who keep me grounded. One of the coolest things about being part of a national lab is the opportunity to casually interact with brilliant minds from various fields. Imagine this: taking an afternoon walk around the building where you might bump into a computer scientist, mathematician, or physicist, and get to chat about the problems you’re working on, gaining fresh perspectives and ideas. It’s amazing how these conversations can spark new ways of thinking, often leading to creative solutions. I also remind myself that progress is often incremental—every small step adds up to a bigger picture. Balancing the scale of my work comes from staying connected to the people and principles that matter most and keeping my focus on the long-term goals.

In 2021, you stated that you “hope to better understand the nuances of experimental research as combined with the particulars of theoretical and simulated data.” Have you been able to gain that understanding at this point in your career? If so, to what extent and how does that understanding inform your current work? If not, what do you feel are the barriers to achieving that understanding?

This is still an ongoing process. Much of my postdoctoral and current work has been dedicated to understanding the nuances between experimental research and theoretical/simulated data. We have made significant strides, particularly in autonomous microscopy, developing machine learning workflows to enhance our understanding of experimental data and integrate it with theoretical simulations.

However, challenges remain, particularly around the disparities between time and length scales. Real-time experiments often don’t align perfectly with theoretical approximations. These gaps require more adaptive approaches. I believe addressing these grand challenges will be crucial not only for my work, but also for improving the synergy between experimental and computational methods. This synergy is essential for unlocking new insights and driving innovation in the world of materials and beyond.

Your Ph.D. thesis was based heavily on machine learning, which you still employ frequently in your work at ORNL. What should current students in the field of materials science know about machine learning and AI, and how would that knowledge benefit them? 

For graduate students in materials science, getting comfortable with the basics of ML and AI is crucial. Start by understanding the algorithms, their implementation, and how to apply them to real-world problems. The key is knowing when and how to use these tools, based on solid domain expertise. It’s not just about using fancy algorithms or architectures, it’s about identifying the problems in materials science that can benefit from them. Beyond just applications, there’s also a big opportunity for students to get involved in method development to push the boundaries of what’s possible.

On a broader note, AI is shaking up every field – it’s changing how we teach and learn, too. With AI-assisted teaching, personalized learning, and a wealth of accessible tools, I think we’re on the brink of a classroom revolution. It’s an exciting time. I imagine embracing these changes will only make us all better researchers and learners. So, for students, one piece of advice, don’t just sit back – dive in and start experimenting (in the lab and on the computer)!

With so much recognition already, and new projects going on constantly, what are your goals or specific things you want to achieve over the next 10 years?

Looking ahead, I am committed to pushing the boundaries of my field by advancing technological solutions that tackle some of the world’s most pressing challenges in energy, AI, and quantum technologies. I am particularly excited about the potential of deepening our understanding of the foundational principles of materials physics and bridging theory with real-world experiments. This integration will be crucial in developing practical, scalable solutions that address the evolving challenges in both society and technology.

With an eye on what’s next, my goal is to take on more leadership roles, collaborating with a diverse range of experts across disciplines to drive innovation and create meaningful change. Equally important is my commitment to mentoring young researchers and contributing to the development of the next generation of scientists. At the same time, I recognize the importance of balancing career advancement with maintaining personal well-being, ensuring both professional growth and personal fulfillment.

***
IMS News thanks Dr. Ghosh for taking the time to answer our questions and providing such potent insight into her work. We wish her all the best as she continues her exciting and innovative career journey.

 

52 UConn Engineering Faculty Among World’s Top 2% of Scientists. Half are IMS Faculty Members

from UConn Today

Fifty-two faculty members from the UConn College of Engineering have been recognized among the world’s top 2% of scientists in 2024, according to Stanford/Elsevier’s Top 2% Scientist Rankings. This annual ranking highlights the most widely cited researchers across diverse scientific disciplines, underscoring their significant contributions to research and their global impact. Half of those recognized are Institute of Materials Science (IMS) faculty members.

The top 2% career-long faculty members from UConn’s College of Engineering are: Mark Aindow, Emmanouil Anagnostou, Rajeev Bansal, Yaakov Bar-Shalom, Ali Bazzi, Jinbo Bi, C. Barry Carter, Baki Cetegen, Ki Chon, John DeWolf, Avinash Dongare, Pu-Xian Gao, Amir Herzberg, Bahram Javidi, Thomas Katsouleas, Theo Kattamis, David Kleinman, Lee Langston, Cato Laurencin, Yu Lei, Baikun Li, Tianfeng Lu, Radenka Maric, Jeffrey McCutcheon, Nejat Olgac, Krishna Pattipati, Sanguthevar Rajasekaran, Montgomery Shaw, Luyi Sun, Chih-Jen Sung, Ali Tamayol, Jiong Tang, Guiling Wang, Robert Weiss, Kay Wille, Peter Willett, Ji-Cheng Zhao, Junbo Zhao, Guoan Zheng, Shengli Zhou, and Xiao-Dong Zhou.

This recognition highlights the high caliber of UConn’s engineering faculty, whose research spans critical fields such as biomedical engineering, mechanical engineering, and chemical engineering. Their work not only advances academic knowledge but also offers innovative solutions to pressing global challenges in health care, energy, and materials science.

52 faculty members ranked top 2% world scientists

read the full story at UConn Today.

 

 

Avinash Dongare Named ASME Fellow

Avinash Dongare
Dr. Avinash Dongare

by Linda Costa
IMS Written Communications Assistant

Dr. Avinash Dongare, a resident member of the University of Connecticut’s Institute of Materials Science (IMS) has been elected Fellow of the American Society of Mechanical Engineers (ASME).  Dr. Raj Rajendran, Chair of the Executive Materials Division of ASME, surprised Dongare with the nomination.

Dr. Rajendran has known Avinash since 2007 when they met while Dr. Rajendran was serving as Chief Scientist for the Engineering Directorate at the U.S. Army Research Office.  During that time, Dongare was serving as Rajendran’s National Research Council (NRC) Fellow, working on modeling the response of complex molecules and single crystals under shock (high pressure and high strain rate) loading conditions.

“It is clear that Dr. Dongare stands among the most outstanding researchers of his generation,” Dr. Rajendran said of his decision to nominate Dongare. “I am confident his innovative research will continue to earn him well-deserved recognition and accolades from his peers.”

Rajendran also noted Dongare’s dedication to the field, noting that he actively serves the scientific community through his roles with ASME and as a reviewer for several leading journals in his area of expertise.

“His service and leadership underscore his commitment to advancing science and supporting the work of his colleagues,” Dr. Rajendran commented.

Dr. Dongare’s current research involves the development and application of advanced computational methods to investigate the behavior and properties of novel materials across multiple scales.

ASME is a nonprofit organization founded in 1880 to help the engineering community develop solutions to numerous challenges.

Collaborative Research Paves Way for High-Performance Fiber Materials

Dr. Yao Lin

by Linda Costa
IMS Written Communications Assistant

A research study recently published in the Journal of the American Chemical Society (JACS) presents a breakthrough in the design of synthetic copolypeptides which mimic the mechanical properties of spider silk.

The study, entitled Synthesis and In Situ Thermal Induction of β-Sheet Nanocrystals in Spider Silk-Inspired Copolypeptides, was conducted in the research lab of IMS resident faculty member and Professor of Chemistry, Dr. Yao Lin, in collaboration with Dr. Jianjun Cheng, Professor of Materials Science and Engineering at the University of Illinois Urbana Champaign (UIUC). Graduate students Tianjian Yang and Jianan Mao (UConn) and Tianrui Xue (UIUC) provided essential contributions to the study.

Leveraging advanced helix-accelerated, ring-opening polymerization techniques, the research team synthesized multiblock copolypeptides, which undergo a transformation into β-sheet nanocrystals upon heating, achieving robust materials with excellent mechanical integrity, tunability, and processability without the need for solvents.

The study also expands upon traditional poly-alanine-based constructs found in natural spider silk by introducing novel β-sheet-forming amino acids, offering new ways to tailor these materials for specific functional applications. This approach is expected to pave the way for next-generation biopolymer and high-performance fiber materials whose properties will include increases in tensile strength, extensibility, processability, and versatility similar to natural spider silk.

Professor Lin’s group studies bio-inspired macromolecules and materials using the techniques of polymer synthesis, macromolecular characterization, physical chemistry, molecular biology and biochemistry as tools.

Visit the JACS site to read the research.

Ki Chon Named Board of Directors Distinguished Professor

Ki Chon
Dr. Ki Chon

Dr. Ki H. Chon, the Krenicki Professor of Biomedical Engineering at the University of Connecticut, is a pioneer in the field of biosignal processing and wearable devices. As the inaugural head of the Biomedical Engineering department from 2014 to 2022, Dr. Chon’s leadership was instrumental in driving substantial growth in both faculty recruitment and research funding, securing a more than $17 million increase in annual research allocations.

Having earned his undergraduate engineering degree from UConn, Dr. Chon has remained dedicated to advancing his alma mater’s stature in the global academic community. His research has led to the development of a life-saving wearable device capable of predicting seizures in divers—a breakthrough that underscores his commitment to translating academic research into practical, real-world applications. This innovation has not only secured the backing of the U.S. Navy but also holds the potential to transform safety protocols in diving operations worldwide.

Dr. Chon’s scholarly contributions are extensive, with an impressive tally of over 220 refereed journal articles and 13 U.S. patents granted, alongside substantial federal research funding totaling more than $29 million. His work on real-time detection of atrial fibrillation and other physiological anomalies via mobile and wearable technology platforms has positioned him at the forefront of biomedical engineering.

Dr. Chon has demonstrated a profound commitment to educational innovation. He has developed three new courses, including Junior Design and Biomedical Signal Processing, which have significantly enhanced the biomedical engineering curriculum at UConn. These courses not only prepare students for real-world engineering challenges but also ensure that they are well-versed in the latest technological advancements and methodologies.

Beyond his technical and academic achievements, Dr. Chon has played a pivotal role in enhancing the department’s diversity and inclusion efforts. His recruitment strategy led to the appointment of UConn’s first female African American Professor in the College of Engineering, marking a significant step forward in fostering an inclusive academic environment.

As a fellow of six major societies and a distinguished member of the Connecticut Academy of Science and Engineering, Dr. Chon’s contributions to the field of biomedical engineering are widely recognized. His leadership and vision have not only elevated the Department of Biomedical Engineering at UConn but have also had a profound impact on the broader scientific and engineering communities.

In recognition of his outstanding contributions to research, teaching, and service, Dr. Ki H. Chon is an exemplary candidate for the Board of Trustees Distinguished Professor award. His ongoing dedication to the field and his alma mater makes him a deserving recipient of this prestigious honor.

UConn Signs Contract With Air Force Research Laboratory

from the Department of Materials Science and Engineering

A robotic welding arms in operation.
A robotic welding arms in operation.

UConn recently received $10.5 million from the Air Force Research Laboratory (AFRL) for research on high-temperature materials and manufacturing processes. The funding will allow a team of seven faculty members from Materials Science and Engineering (Professors Aindow, Alpay, Frame, and Hebert), Civil and Environmental Engineering (Professor Kim), Mechanical Engineering (Professor Bilal), and Chemistry (Professor Suib) along with post-doctoral associates and graduate assistants to address challenges in the manufacturing of aerial systems intended to fly at high speed. Much of the four-year research project will focus on welding-related challenges for high-temperature metallic materials that are used for structures exposed to high speeds. The UConn team will combine experimental and theoretical approaches to help their collaborator, RTX, advance their manufacturing solutions. Additional project tasks address the behavior of non-metallic high-temperature materials under different processing and service conditions, additive manufacturing of high-temperature refractory metals, and the design and processing of metamaterials. These metamaterials are designed to change heat- and electro-magnetic fields in and around structures and are considered to advance the thermal management of high-temperature structures.

The new AFRL project comes at the heels of previous and ongoing AFRL projects for UConn approaching $30 million that involve over 15 faculty members from the Colleges of Engineering and Liberal Arts and Sciences with dozens of graduate students and post-doctoral associates. Covering research from functional materials and photonics to casting, welding, and additive manufacturing, the UConn team has established itself as a valuable partner for the AFRL and key industry partners, for example, Pratt & Whitney and Collins Aerospace.

Professor Rainer Hebert says of the contract, “The AFRL funding enables the UConn team to pursue materials processing research with a strong focus on industry and government relevance. Students and post-doctoral associates working on the project see firsthand how their research translates to industry. This insight will help in preparing a workforce that can pursue research excellence with a keen sense of the needs and constraints of industrial applications.”

Collaborative Research to Develop Filament-Based Hydrogels is Cover for JACS

Cover of JACS March 6, 2024 issue featuring Yao Lin etal. researchIn a collaborative effort, researchers from the University of Connecticut (led by Profs. Yao Lin, VJ Kumar and Xudong Yao) and the University of Illinois at Urbana-Champaign (led by Prof. Jianjun Cheng) have made an advance in the rational design of synthetic polypeptides to develop filament-based hydrogels. The work, conceptualized and realized by the graduate students Tianjian Yang (UConn) and Tianrui Xue (UIUC), has been published in the Journal of the American Chemical Society (JACS) and featured as the cover of the March 6 issue.

Building on the recent advancement of autoaccelerated ring-opening polymerization of amino acid N-carboxyanhydrides (NCAs), this study strategically explores a series of random copolymers comprising multiple amino acids, aiming to elucidate the core principles governing gelation pathways of these purpose-designed copolypeptides. The team found that the selection of amino acids steered both the morphology of fibril superstructures and their assembly kinetics, subsequently determining their potential to form sample-spanning networks. Importantly, the viscoelastic properties of the resulting supramolecular hydrogels can be tailored according to the specific copolypeptide composition through modulations in filament densities and lengths. The findings enhance our understanding of directed self-assembly in high molecular weight synthetic copolypeptides, offering valuable insights for the development of synthetic fibrous networks and biomimetic supramolecular materials with custom-designed properties.

The research was supported by NSF grants awarded to Yao Lin at UConn (DMR 1809497 and 2210590) and Jianjun Cheng at UIUC (CHE 1905097).

IMS Director Discusses Carbon Capture and Impact Mitigation

Dr. Steven L. Suib, Director of UConn’s Institute of Materials Science (IMS), is working to mitigate the effects of greenhouse gasses caused by carbon dioxide (CO2) emissions through carbon capture and conversion.  His work was recently highlighted in a UConn video.  IMS News reached out to Dr. Suib to discuss the impacts of the his research.

Carbon Capture - Gel
Dr. Suib’s research is highlighted in this video produced for UConn Today

How does carbon dioxide (CO2) negatively impact the environment and why is the research you are conducting critical to mitigating the impacts of CO2?

CO2 is a product of combustion from gas burning vehicles, industrial plants, and other sources. Enhanced levels of CO2 are believed to be responsible for global warming and the unusual patterns of weather throughout the world in recent years. We are trying to find ways to trap and gather carbon dioxide and also to transform this into materials that are less hazardous and with practical uses.

You state that CO2 must be trapped (or captured) in order to be converted.  What methodology or methodologies are used to capture CO2 emissions?

There have been many different methods suggested to capture CO2 including physical methods of trapping in porous materials as well as chemical reactions for storage.

Discovering methods of converting CO2 to harmless but useful products requires the introduction of a catalyst to convert the gas. You have conducted extensive and often-cited research in catalysis.  How does this expertise aid in your research? 

The bonds in CO2 are strong and this gas is quite stable. There are many different types of catalysts that we have made. Different reactions are often catalyzed by different catalysts. To find better catalysts they need to be synthesized. The heart of our research programs centers around synthesis of new materials. Unique new materials including catalysts may have different and beneficial properties that commercially available materials do not have.

When you use the term “harmless but useful” in describing products that can be derived from the conversion of CO2, what types of products are possible?

The objective of activating CO2 is to make products that are safe and that can be used in different applications such as new fuels, new chemical feedstocks, and others. These in turn can be used in applications involving sustainable energy, medicines and pharmaceuticals, and new conducting systems (semiconductors, superconductors, batteries, supercapacitors).

It seems we have reached a critical stage in the climate crisis with calls for more research and, above all, action to reduce greenhouse gases and their negative effects.  How urgent is the research you and your students and colleagues are conducting to the mitigation of the climate crisis?  How close is the research to producing measurable outcomes?

The field of capturing and activating CO2 is very active right now, with numerous groups around the world trying to solve problems that would allow CO2 to be eventually used in many different commercial processes. Our work involves a small set of potential materials for capture and activation of CO2. There are measurable improvements in capture and activation. The key will be to push this to the limit so practical processes can be used.

Antigoni Konstantinou Receives 2023-2024 GE Fellowship for Excellence

Ph.D. Student Antigoni Konstantinou
IMS Materials Science Program Ph.D. candidate Antigoni Konstantinou

The College of Engineering recently announced the recipients of its General Electric Fellowship for Excellence.  The award was established to recognize the excellence of current graduate students and to facilitate their completion of the Ph.D. program.  Fellows are selected for their outstanding track records in research and professional service in the areas of advanced materials, manufacturing, and energy.  Antigoni Konstantinou, an Institute of Materials Science (IMS) Materials Science Program Ph.D. student, has been named a recipient of this honor.

Ms. Konstantinou has exhibited academic excellence in both research and leadership.  She currently serves as president of the 2023-2024 e-board for the John Lof Leadership Academy (JLLA). From this position, she empowers UConn’s graduate student community by nurturing essential leadership skills, especially for women in STEM. She is also a former Secretary of the UConn Chapter of the Materials Research Society (MRS).

Since joining the IMS Materials Science Ph.D. program in Spring 2021, Antigoni has been working with advisor Prof. Yang Cao and his Electrical Insulation Research Center (EIRC) utilizing materials preparation and electrical engineering techniques to develop nanostructured insulation materials to protect high-voltage electric motors from high electric fields. This research bridges Materials Science with Electrical Engineering.

IMS and the EIRC congratulate Antigoni on this well-deserved honor.

Xueju “Sophie” Wang Receives 2024 ONR Young Investigator Award

Xueju "Sophie" Wang
Dr. Xueju “Sophie” Wamg

Xueju “Sophie” Wang has been awarded an Office of Naval Research (ONR) 2024 Young Investigator Award in the category Ocean Battlespace Sensing.  The Ocean Battlespace Sensing Department of ONR explores science and technology in the areas of oceanographic and meteorological observations, modeling, and prediction in the battlespace environment; submarine detection and classification (anti-submarine warfare); and mine warfare applications for detecting and neutralizing mines in both the ocean and littoral environment.

One of 24 recipients in various categories, Dr. Wang’s research, entitled A Soft Intelligent Robot for Self-digging, Multi-modal Sensing, and In Situ Marine Sediment Analysis, was recognized by the Littoral Geosciences and subcategory.  The Littoral Geosciences and Optics program supports basic and applied research for expeditionary warfare, naval special warfare, mine warfare and antisubmarine warfare in shelf, near-shore, estuarine, riverine, and riparian environments, with a particular emphasis on robust 4D prediction of environmental characteristics in denied, distant or remote environments.

Dr. Wang earned a Ph.D. from Georgia Institute of Technology in 2016.  She joined the faculty of the Materials Science and Engineering Department (MSE) in 2020 with an appointment in the Institute of Materials Science (IMS).  Since then, she has earned extensive recognition for her research including the National Science Foundation (NSF) CAREER award in 2022; the National Institutes of Health (NIH) Trailblazer Award, also in 2022; and the American Society of Mechanical Engineers (ASME) Orr Early Career Award in 2021 among others.

Wang’s research focuses on soft, stimuli-responsive materials and multifunctional structures; multistability of reconfigurable, magnetically responsive structures, flexible/pressure-tolerant/bio-integrated electronics, soft robotics and intelligent systems; and in-situ/environmental operando experimental techniques.  Her research has been published extensively.