Research

UConn Signs Contract With Air Force Research Laboratory

from the Department of Materials Science and Engineering

A robotic welding arms in operation.
A robotic welding arms in operation.

UConn recently received $10.5 million from the Air Force Research Laboratory (AFRL) for research on high-temperature materials and manufacturing processes. The funding will allow a team of seven faculty members from Materials Science and Engineering (Professors Aindow, Alpay, Frame, and Hebert), Civil and Environmental Engineering (Professor Kim), Mechanical Engineering (Professor Bilal), and Chemistry (Professor Suib) along with post-doctoral associates and graduate assistants to address challenges in the manufacturing of aerial systems intended to fly at high speed. Much of the four-year research project will focus on welding-related challenges for high-temperature metallic materials that are used for structures exposed to high speeds. The UConn team will combine experimental and theoretical approaches to help their collaborator, RTX, advance their manufacturing solutions. Additional project tasks address the behavior of non-metallic high-temperature materials under different processing and service conditions, additive manufacturing of high-temperature refractory metals, and the design and processing of metamaterials. These metamaterials are designed to change heat- and electro-magnetic fields in and around structures and are considered to advance the thermal management of high-temperature structures.

The new AFRL project comes at the heels of previous and ongoing AFRL projects for UConn approaching $30 million that involve over 15 faculty members from the Colleges of Engineering and Liberal Arts and Sciences with dozens of graduate students and post-doctoral associates. Covering research from functional materials and photonics to casting, welding, and additive manufacturing, the UConn team has established itself as a valuable partner for the AFRL and key industry partners, for example, Pratt & Whitney and Collins Aerospace.

Professor Rainer Hebert says of the contract, “The AFRL funding enables the UConn team to pursue materials processing research with a strong focus on industry and government relevance. Students and post-doctoral associates working on the project see firsthand how their research translates to industry. This insight will help in preparing a workforce that can pursue research excellence with a keen sense of the needs and constraints of industrial applications.”

IMS Director Discusses Carbon Capture and Impact Mitigation

Dr. Steven L. Suib, Director of UConn’s Institute of Materials Science (IMS), is working to mitigate the effects of greenhouse gasses caused by carbon dioxide (CO2) emissions through carbon capture and conversion.  His work was recently highlighted in a UConn video.  IMS News reached out to Dr. Suib to discuss the impacts of the his research.

Carbon Capture - Gel
Dr. Suib’s research is highlighted in this video produced for UConn Today

How does carbon dioxide (CO2) negatively impact the environment and why is the research you are conducting critical to mitigating the impacts of CO2?

CO2 is a product of combustion from gas burning vehicles, industrial plants, and other sources. Enhanced levels of CO2 are believed to be responsible for global warming and the unusual patterns of weather throughout the world in recent years. We are trying to find ways to trap and gather carbon dioxide and also to transform this into materials that are less hazardous and with practical uses.

You state that CO2 must be trapped (or captured) in order to be converted.  What methodology or methodologies are used to capture CO2 emissions?

There have been many different methods suggested to capture CO2 including physical methods of trapping in porous materials as well as chemical reactions for storage.

Discovering methods of converting CO2 to harmless but useful products requires the introduction of a catalyst to convert the gas. You have conducted extensive and often-cited research in catalysis.  How does this expertise aid in your research? 

The bonds in CO2 are strong and this gas is quite stable. There are many different types of catalysts that we have made. Different reactions are often catalyzed by different catalysts. To find better catalysts they need to be synthesized. The heart of our research programs centers around synthesis of new materials. Unique new materials including catalysts may have different and beneficial properties that commercially available materials do not have.

When you use the term “harmless but useful” in describing products that can be derived from the conversion of CO2, what types of products are possible?

The objective of activating CO2 is to make products that are safe and that can be used in different applications such as new fuels, new chemical feedstocks, and others. These in turn can be used in applications involving sustainable energy, medicines and pharmaceuticals, and new conducting systems (semiconductors, superconductors, batteries, supercapacitors).

It seems we have reached a critical stage in the climate crisis with calls for more research and, above all, action to reduce greenhouse gases and their negative effects.  How urgent is the research you and your students and colleagues are conducting to the mitigation of the climate crisis?  How close is the research to producing measurable outcomes?

The field of capturing and activating CO2 is very active right now, with numerous groups around the world trying to solve problems that would allow CO2 to be eventually used in many different commercial processes. Our work involves a small set of potential materials for capture and activation of CO2. There are measurable improvements in capture and activation. The key will be to push this to the limit so practical processes can be used.

Xueju “Sophie” Wang Receives 2024 ONR Young Investigator Award

Xueju "Sophie" Wang
Dr. Xueju “Sophie” Wamg

Xueju “Sophie” Wang has been awarded an Office of Naval Research (ONR) 2024 Young Investigator Award in the category Ocean Battlespace Sensing.  The Ocean Battlespace Sensing Department of ONR explores science and technology in the areas of oceanographic and meteorological observations, modeling, and prediction in the battlespace environment; submarine detection and classification (anti-submarine warfare); and mine warfare applications for detecting and neutralizing mines in both the ocean and littoral environment.

One of 24 recipients in various categories, Dr. Wang’s research, entitled A Soft Intelligent Robot for Self-digging, Multi-modal Sensing, and In Situ Marine Sediment Analysis, was recognized by the Littoral Geosciences and subcategory.  The Littoral Geosciences and Optics program supports basic and applied research for expeditionary warfare, naval special warfare, mine warfare and antisubmarine warfare in shelf, near-shore, estuarine, riverine, and riparian environments, with a particular emphasis on robust 4D prediction of environmental characteristics in denied, distant or remote environments.

Dr. Wang earned a Ph.D. from Georgia Institute of Technology in 2016.  She joined the faculty of the Materials Science and Engineering Department (MSE) in 2020 with an appointment in the Institute of Materials Science (IMS).  Since then, she has earned extensive recognition for her research including the National Science Foundation (NSF) CAREER award in 2022; the National Institutes of Health (NIH) Trailblazer Award, also in 2022; and the American Society of Mechanical Engineers (ASME) Orr Early Career Award in 2021 among others.

Wang’s research focuses on soft, stimuli-responsive materials and multifunctional structures; multistability of reconfigurable, magnetically responsive structures, flexible/pressure-tolerant/bio-integrated electronics, soft robotics and intelligent systems; and in-situ/environmental operando experimental techniques.  Her research has been published extensively.

 

IMS Industrial Affiliates Program Hosts 2023 Annual Meeting

2023 Annual Meeting - Morning Session
The morning session was held in the Science 1 Active Learning Classroom.

On May 25, 2023, the Institute of Materials Science (IMS) Industrial Affiliates Program (IAP) held its first in-person annual meeting since the onset of the COVID-19 pandemic in 2020.

The meeting began with a welcome message by Dr. Hatice Bodugoz-Senturk, Associate Director of the IMS Industrial Affiliates Program, followed by remarks by Dr. Steven L. Suib, Director of IMS, and Dr. Paul Nahass, Director of the IMS Industrial Affiliates Program. Dr. Bryan Huey, Department Head of Materials Science and Engineering (MSE) gave an overview of the MSE department and its achievements; and Dr. Kelly Burke, Director of the IMS Polymer Program, discussed the latest developments in polymer science.

Dr. George Matheou presents
Dr. Georgios Matheou presents his research at the morning session of the 2003 Annual Meeting

The morning session featured three presentations by IMS faculty members from different departments. Dr. James “Nate” Hohman, Assistant Professor of Chemistry, talked about his research on experimental foundations for next-generation materials and interfaces, and how he uses big science, big data, and big AI to discover new materials for various applications. Dr. Georgios Matheou, Assistant Professor of Mechanical Engineering, presented his work on predictive modeling and simulation of multi-physics flows, and how he collaborates with industry partners in renewable energy, aerospace, and health care sectors. Dr. Vahid Morovati, Assistant Professor of Civil and Environmental Engineering, explained his theoretical framework to model the long-term mechanical behavior of elastomeric materials considering damage accumulation and degradation.

The luncheon session featured a keynote address by Dr. Anne D’Alleva, Provost and Executive Vice President for Academic Affairs, who shared her vision and goals for UConn’s academic excellence and innovation. She also highlighted the importance and impact of materials science and engineering in addressing the global challenges and opportunities in the 21st century. The luncheon concluded with closing remarks by Dr. Paul Nahass.

2023 Annual Meeting Luncheon 2
IMS Director Dr. Steven L. Suib addresses industry partners, faculty, and students at the 2023 Annual Meeting Luncheon

The meeting was attended by more than 100 participants from industry affiliates and external partners along with IMS faculty, students, and alumni. The meeting also showcased the annual Joint Poster Session by IMS Polymer Program and Materials Science and Engineering (MSE) students, demonstrating their projects and achievements in materials science and engineering.  Industry partners were also given tours of core laboratories in the Science 1 building, the new home to IMS.

The IMS Industrial Affiliates Program provides materials characterization services to its industry partners. The program also facilitates collaborations between IMS faculty and students and industry partners on research projects of mutual interest.

The Institute of Materials Science is an interdisciplinary research institution that supports over 100 faculty members from 15 departments across UConn’s schools and colleges. The institute offers advanced degrees in polymer science and materials science, as well as state-of-the-art research facilities for its students and faculty to conduct research that is changing the future of materials science.

Naba Karan Wins DoD DURIP Funding

Dr. Naba Karan
Dr. Naba Karan

The U.S. Department of Defense (DoD) awarded four UConn scientists with high-profile grants to fund the acquisition of technology to bolster their research capabilities.

The highly competitive Defense University Research Instrumentation Program (DURIP), offered by the Air Force Office of Scientific Research (AFOSR), the Army Research Office (ARO), and the Office of Naval Research (ONR), funds cutting-edge research projects with potential to assist national defense.

Lithium-ion (Li-ion) batteries are one of the most common rechargeable energy storage technologies on the market. As a rule, they are quite safe under normal operating conditions, powerful, and scalable, from smartphones to electric cars. But given the number of Li-ion batteries produced around the world, their relatively small failure rate has still resulted in some high-profile stories of Li-ion batteries going into thermal runaway – an event when a battery catches fire, explodes, and releases toxic gases.

IMS member Naba Karan, an assistant research professor at the Center for Clean Energy Engineering (C2E2) in the School of Engineering, isn’t surprised.

“You can think of them as bombs,” he says, noting the high quantity of chemical energy contained within Li-ion batteries. And he’s looking to blow them up—on purpose.

With funds from the Office of Naval Research, Karan is constructing a facility at UConn that will explode the batteries in a controlled environment to determine critical safety parameters needed for designing advanced engineering protocols to mitigate thermal runaway events. In a military context, this information will help operators of machinery that depend on these high-powered batteries, such as submarines, determine when internal battery temperatures are exceeding safety thresholds. Most crucially, it will allow them to avoid catastrophic failure by diverting some of this heat.

The equipment will be able to analyze thermal characteristics of all types of energy storage technologies, not only Li-Ion batteries. Since it will be one of the only such facilities in the northeast region, Karan anticipates a high degree of interest and collaboration from other universities and companies looking into studying the safety characteristics of existing and emerging battery chemistries.

IMS Welcomes Mihai “Mishu” Duduta

Dr. Mihai Duduta
Dr. Mihai Duduta’s research has the potential to change the future of robotics.

Mihai “Mishu” Duduta has joined the Department of Mechanical Engineering with an appointment in the Institute of Materials Science (IMS).  Having earned his B.S. from MIT, he completed his M.S. and Ph.D. at Harvard University.  Following the completion of his Ph.D., Duduta joined the faculty of the Department of Mechanical and Industrial Engineering at the University of Toronto as an assistant professor.  He is a recipient of the Banting Foundation Discovery Award for 2022 for his research on “Smart Micro-catheters Based on Electro-mechanical Artificial Muscles.”

At the heart of his research “Mishu” (as Duduta prefers to be called) is focused on the science of soft robotics, novel materials, and energy storage.  He seeks to “invent new ways to store energy and deliver power that bring new robotic capabilities.”

IMS News reached out to Dr. Duduta to welcome him and learn more about him and his research.

Your research focus includes novel materials, soft robotics, and energy storage.  All of these are at the cutting edge of future technology.  What led you to pursue this field of science?

I have always been fascinated by energy, and by materials that can act as transducers, effectively transforming one type of energy into another, for example chemical energy stored in covalent bonds of a fuel, to thermal energy, or heat by burning said fuel. I see Robotics as the next area of innovation for energy storage, conversion and harvesting.

You have said that in order for robots to interact more closely with people they must be more compliant, or flexible.  How can the combination of materials, soft robotics, and energy storage achieve this goal and what do you see as the future implications as the science advances?

As machines become smaller or softer, we’ll need to invent new materials and mechanisms for actuation, sensing and computation. The end goal is to replicate nature as closely as possible, in an engineered system. If we have artificial muscles that can effectively replace natural ones, and run as efficiently for long periods of time, we can radically change almost all segments of the economy: from healthcare, to agriculture, manufacturing and beyond.

We are happy to welcome you to UConn IMS.  How did you become interested in UConn and how will you contribute to student success, a key priority for the University?

UConn has a great location, outstanding students, talented faculty, and fantastic infrastructure.  My goal is to train students to be more capable scientists and engineers, but also to develop a strong grasp of how to communicate science effectively, as well as gain an understanding of where their work can bring societal value.

Menka Jain is Co-organizer of 28th IWOE

Menka Jain
Dr. Menka Jain

The International Workshop on Oxide Electronics (IWOE) series has become an important venue to discuss recent advances and emerging trends in this developing field. The aim of the workshop is to provide an interdisciplinary forum for researchers – theorists as well as experimentalists – on understanding the fundamental electronic and structural properties and also on the design, synthesis, processing, characterization, and applications of (epitaxial) functional oxide materials.

Associate Professor of Physics and Institute of Materials Science (IMS) faculty member Menka Jain is co-organizer of the 28th International IWOE LogoWorkshop on Oxide Electronics (IWOE) to be held October 2-5 in Portland, Maine.  Dr. Jain serves on the program committee with Ryan Comes of Auburn University, Charles H. Ahn of Yale University, and Divine Kumah of North Carolina State University.  She is also the designer of the logo for the workshop (pictured).

The workshop will showcase results of critical scientific importance as well as studies revealing the technological potential of functional oxide thin films to create devices with enhanced performance.

IMS and Electrical Insulation Research Center Welcomes Wesley Zhong

Wesley Zhong
EIRC Lab Manager, Wesley Zhong

Wesley Zhong has joined the Institute of Materials Science (UConn IMS) as the new lab manager for the Electrical Insulation Research Center (EIRC).  His specialties include high voltage safety, electrial insulation testing, partial discharge detection, experiment build and design, extreme environment testing, power electronics testing, technical writing, Lean Six Sigma and equipment maintenance and calibration.

Wesley earned his B.S. in Electrical and Computer Engineering Technology from Purdue University where he served as an undergraduate teaching assistant.  Additionally, he served as He worked as a dielectrics specialist at GE Global Research for the past five years designing, building, and running HV dielectric experiments involving aviation, power electronics, and motor/generators design.

Under the direction of Dr. Yang Cao, the Electrical Insulation Research Center has extensive facilities for characterizing the electrical properties of insulating materials used in electrical apparatus including distribution and transmission networks, rotating machinery component, electrostatic/electro-responsive devices, capacitive energy storage, and more.

Please join us in welcoming Wesley to UConn and IMS!

Dr. Cato Laurencin Publishes Breakthrough Report on Rotator Cuff Regeneration Treatment

from UConn Today

Cato Laurencin
Dr. Cato Laurencin

A new way to regenerate muscle could help repair the damaged shoulders of millions of people every year. The technique uses advanced materials to encourage muscle growth in rotator cuff muscles. Dr. Cato Laurencin and his team reported the findings in the Proceedings of the National Academy of Sciences (PNAS) August 8th issue.

Tears of the major tendons in the shoulder joint, commonly called the rotator cuff, are common injuries in adults. Advances in surgery have made ever better rotator cuff repairs possible. But failure rates with surgery can be high.  Now, a team of researchers from the UConn School of Medicine led by Laurencin, a surgeon, engineer and scientist, reports that a graphene/polymer matrix embedded into shoulder muscle can prevent re-tear injuries.

“Most repairs focus on the tendon,” and how to reattach it to the bone most effectively, Laurencin says. “But the real problem is that the muscle degenerates and accumulates fat. With a tear, the muscle shrinks, and the body grows fat in that area instead. When the tendon and muscle are finally reattached surgically to the shoulder bone, the weakened muscle can’t handle normal stresses and the area can be re-injured again.

Dr. Laurencin along with graduate student Nikoo Shemshaki worked with other UConn Connecticut Convergence Institute researchers to develop a polymer mesh infused with nanoplatelets of graphene. When they used it to repair the shoulders of rats who had chronic rotator cuff tears with muscle atrophy, the muscle grew back. When they tried growing muscle on the mesh in a petri dish in the lab, they found the material seemed to encourage the growth of myotubes, precursors of muscle, and discourage the formation of fat.

“This is really a potential breakthrough treatment for tears of the rotator cuff. It addresses the real problem: muscle degeneration and fat accumulation,” Laurencin says.

The next step in their work is studying the matrix in a large animal. The team looks forward to developing the technology in humans.

This work was funded by NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant No. DP1AR068147 and National Science Foundation Emerging Frontiers in Research and Innovation Grant No. 1332329.