Research

Department of Energy Early Career Award Recipient Yuanyuan Zhu

Yuanyuan Zhu
Dr. Yuanyuan Zhu is the only Connecticut recipient of the DOE Early Career Award for 2022.

Established in 2010, the DOE Office of Science Early Career Research Program supports the individual research programs of outstanding scientists early in their careers and stimulates research careers in the disciplines supported by the DOE Office of Science: Advanced Scientific Computing Research (ASCR), Biological and Environmental Research (BER), Basic Energy Sciences (BES), Fusion Energy Sciences (FES), High Energy Physics (HEP), Isotope R&D and Production (IP), and Nuclear Physics (NP).

Among the 83 university and DOE national lab researchers announced as recipients of the award for 2022, Assistant Professor of Materials Science and Engineering Yuanyuan Zhu is the only Connecticut researcher to receive the honor.  IMS News asked Dr. Zhu about her research and the award.

In 2019, you were appointed Director of the UConn DENSsolutions InToEM Center for in-situ TEM research at IPB Tech Park.  You have since had papers published related to the research the Center is conducting.  As we are seeing more and more evidence of the effects of climate change, how do you hope your research at the InToEM Center will assist in solving some of the problems we are now dealing with?

Yes, we have published a couple of papers since 2019 using the in-situ environmental TEM gas cell. Here you can find our full publications: https://scholar.google.com/citations?hl=en&user=HlDqamcAAAAJ&view_op=list_works&sortby=pubdate .

It’s a coincidence that the DENSsolutions’ ETEM gas cell system is named as “Climate”, because it involves gas environment for chemical reactions in a microscope. Another example is their liquid cell system, which is called “Stream” simply because the reaction stimuli involved.

There are many materials researches related to energy and environment, including climate change, that can benefit from the in-situ ETEM research. One immediate example is heterogeneous catalysis used for natural gas conversion and H2 production. And the fusion energy materials research funded by the DOE ECA is another good example.

Congratulations on receiving the Department of Energy’s Early Career Award for 2022.  What are your hopes for your research on Understanding Thermal Oxidation of Tungsten and the Impact to Radiation Under Fusion Extremes?

Fusion energy holds great promise for replacing fossil fuels for 24/7 baseload electrical power. We are excited that the DOE Early Career Award will fund our in-situ ETEM study to directly address a well-known fusion safety hazard concerning aggressive high-temperature oxidation of plasma-facing material tungsten. We hope to gain fundamental understanding of tungsten degradation in case of air-ingress scenarios that could inform the best strategy for responding to accidents, and could guide the design of advanced W-based materials that better preserve divertor integrity for even more demanding DEMO fusion extremes. Simply put it, we want to make the operation of fusion energy systems safer and more reliable.

You have several Ph.D. candidates under your advisement.  How do you hope to influence these young scientists?

Our research group provides a welcoming, supportive and inclusive working environment to drive personal success for each Ph.D. researcher. Through the first-hand work on such research projects closely to clean energy and sustainability, I believe our Ph.D. students will gain confidence and skills in research and also develop a solid sense of social responsibility.

We are seeing many more women represented in STEM.  What advice would you give to young women who may be considering a career in science, technology, engineering and mathematics?

We need everyone in STEM, and anything is possible if one follows his/her/their passion. Research is fun but progress is built on failure and resilience.

 

Anna Tarakanova is Studying Elastins to Develop Aging-Related Therapies

from UConn Today

Dr. Anna Tarakanova
Mechanical engineering professor Anna Tarakanova listens during the 2020 Women in STEM Frontiers in Research Expo, which she co-organized. (Contributed photo)

Anna Tarakanova has long had an interest in how objects and bodies work. Her chosen specialty in the field of Mechanical Engineering – studying the structure, function, and mechanics of biological systems and materials, especially fibrous protein materials such as elastin and collagen – merges the two.

The assistant professor of mechanical engineering and her team are working to establish a high-fidelity modeling framework for both healthy and degenerated elastins for use as a tool to resolve different pathological stressors affecting how elastin functions from a nanoscale.

During aging and with chronic, often age-related illnesses such as diabetes, cardiovascular disease, and osteoarthritis, elastin can degenerate, causing a decline in normal function. Elastin is an essential structural protein that gives the skin, heart, blood vessels, and other elastic tissues in the body the stretchy quality they need to function.

“At the molecular scale, there are a number of physical-chemical modifications that occur that drive this mechanical degeneration over time,” Tarakanova says. “Because they are quite numerous and act in parallel, it’s difficult to deconstruct which triggers impact mechanics and to what degree. If we can understand the mechanism, we can think about novel therapies to target aging and aging-associated diseases.”

Tarakanova’s work has earned her a 2022 Early Career Development (CAREER) Award from the National Science Foundation. She is one of 11 junior faculty members at UConn this year to receive the coveted award, which recognizes the recipient’s potential as a role model in education and research.

CAREER Awards come with five years of funding intended to provide a foundation for a young professor’s research program. Beyond advancing her research, Tarakanova plans to use the funding to create activities and events to engage and support undergraduate and graduate students, especially those from underrepresented groups. The effort will include a reboot of a Women In STEM Frontiers in Research Expo she co-organized with a colleague in January 2020.

“For me, it was kind of a natural extension of what I wanted to do as a professor, being a woman in STEM and being a minority for most of my education career,” Tarakanova says.

Elastin and collagen are not the only protein materials getting her attention. Early in the pandemic, Tarakanova and two of her graduate students began exploring the spike protein associated with SARS-CoV-2 to figure out how it moved when it interacted with the immune system. She is now working with Paulo Verardi, a pathobiologist in UConn’s College of Agriculture, Health and Natural Resources, and UConn biochemist Simon White to develop new and potentially better ways to stabilize spike proteins for use in COVID-19 vaccines, particularly in relation to emerging new variants of the virus.

“Some of the methods we are using to study the spike protein are related to the methods that we’ve used and continue to use to look at elastin,” she says. “It’s a different project, but it does broadly fall under this fusing of computing and computational models, physics, biomechanics, and biochemistry to understand the dynamic behavior of the COVID spike protein, the protein that sits on part of the corona.”

Rajeswari Kasi to Serve on Editorial Board of Micromolecules

Rajeswari Kasi
Dr. Rajeswari Kasi

Professor of Chemistry Rajeswari (Raji) Kasi has accepted an appointment to the editorial board of Macromolecules, a peer-reviewed scientific journal published by the American Chemical Society. The publication was first published in 1968 on a bi-monthly basis but has, over the years, moved from monthly to bi-weekly publication.

Kasi’s research encompasses all aspects of materials design including synthesis of hierarchically structured polymers and polymer-hybrid materials with tailored architecture, functionality, and composition; investigation of self-assembly and structure at various length scales; and evaluation of unique macroscopic material properties. She will serve a three-year term on the editorial board.

MSE Assistant Professor Publishes Origami-inspired Research in Materials Horizons

Student Yi Li
Ph.D. student Yi Li in Assistant Professor Wang’s group is actuating multistable, origami-inspired structures using a portable magnet.

MSE Assistant Professor Xueju “Sophie” Wang recently published her article entitled “Tailoring the multi-stability of origami-inspired, buckled magnetic structures via compression and creasing” in Materials Horizons. The study was in collaboration with Professor Teng Zhang at Syracuse University and Professor Halim Kusumaatmaja at Durham University, who led the study’s theoretical work.

According to Wang, the research originates from origami, the ancient art of paper folding. “It has inspired the design of many engineering structures for a wide range of applications, including deployable systems, self-folding machines, reconfigurable metamaterials, and DNA origami,” she says.

A key feature in the design of all these structures is their ability to have multiple stable states. The article lays out the foundation for the rational design of these structures. The work introduces two effective parameters of creasing and compression for tailoring the multistability of origami-inspired structures. Using ribbon structures as an example, a design phase diagram is constructed as a function of the crease number and compressive strain. The results show that the number of distinct stable states can be actively tuned by varying the crease number from 0 to 7 and the strain from 0% to 40%. These two parameters can be easily incorporated in the structure’s design to maximize functionality. Diverse examples were designed and demonstrated, from programmable structure arrays to a biomimetic insect and a soft robot, which can be actuated remotely by magnetic forces. Read the full MSE story.

IMS Faculty Members Receive Department of Education GAANN Award

Drs. Bryan Huey and Lesley Frame
Drs. Bryan Huey (l) and Lesley Frame

Drs. Bryan Huey (IMS/MSE) and Lesley Frame (IMS/MSE) are recent recipients of the Department of Education (ED) Graduate Assistance in Areas of National Need (GAANN) grant.

Drs. Huey and Frame collaboratively applied for the award which provides fellowships, through academic departments and programs, to assist graduate students with excellent records who demonstrate financial need and plan to pursue the highest degree available in their course study at the institution in a field designated as an area of national need.

Their Careers in Advanced Materials Engineering Research and Academia (CAMERA) GAANN program will provide world-class educational, research, advising, and professional training experiences and opportunities, beyond MSE courses and laboratory research taught by established experts in a range of materials engineering specialties. They will utilize the funding to support five Ph.D. fellowships focusing on increasing the number of highly trained Ph.D. scholars from populations traditionally underrepresented in STEM.

Drs. Huey and Frame plan to provide primary and secondary faculty advisors for candidates selected for the fellowship. Each Fellow will earn credits through a novel ‘Academia Lab’ created by MSE in conjunction with the school of engineering and the UConn Center for Excellence in Teaching and Learning in order to incorporate instruction and workshops in educational pedagogy and practice, scientific writing and presenting, and mentorship skills.

The grant of ~$760K will be supplemented by funding from the School of Engineering, the Office of the Vice President for Research, the Office of the Provost, and The Graduate School.

Dr. Ying Li Receives NSF CAREER Award

Dr. Ying Li is one of eight UConn faculty members, and three IMS faculty members, to receive a National Science Foundation Career CAREER Award in 2021.  Li  will develop a machine learning model to better understand the properties of a promising sustainable material.To learn more about the award  Visit UConn Today.

Dr. Heidi Dierssen is Conducting Research to Improve Remote Sensing of Microplastics on the Ocean’s Surface

Dr. Heidi DierssenProfessor of marine sciences and geography, Heidi Dierssen, has received a nearly $577,000 grant from NASA to study better methods for remote sensing of surface microplastics using satellites. The project will involve a collaboration with a visual artist to advance community understanding of this problem.

Dierssen’s lab, Coastal Ocean Lab for Optics and Remote Sensing (COLORS), conducted previous research on the optical properties of microplastics, providing the necessary background information to determine the best approaches for remote detection. Understanding the optical properties of microplastics is the first step in determining whether satellites can detect and quantify floating microplastics from space.

Dierssen has assembled a diverse scientific team of experts from NASA Goddard Space Flight Center, Colombia University, University of Maryland, Baltimore County, and Terra Research Inc.

Read the full story from UConn Today

From Waste to Biodiesel

Dr. Richard Parnas
Dr. Richard Parnas pumps biodiesel.

Dr. Richard Parnas’s UConn spinoff company, REA Resource Recovery Systems, broke ground in March on a first-in-the-world, FOG-to-Biodiesel production plant at the John Oliver Wastewater Treatment Facility in Danbury, CT. The City of Danbury contracted with Veollia North America to perform a 70 million dollar plant upgrade, and the REA FOG-to-Biodiesel system is included in the overall project.

The REA system makes use of a licensed UConn patent for a novel biodiesel reactor developed by Parnas and colleagues several years ago. REA sponsors work at UConn to continue development efforts on several aspects of the process including novel methods of sulfur reduction using protein/polymer conjugate gel adsorbents.

Dr. Parnas retired in 2020 after 19 years as a Professor of Chemical and Biomolecular Engineering and faculty member of the Institute of Materials Science (IMS) Polymer Program.

UConn, UMass Lowell, Georgia Tech to Collaborate with Industry on 3D Printing Research Supported by NSF

Multi-material micro-lattice polymeric structures fabricated using 3D printing
Multi-material micro-lattice polymeric structures fabricated using 3D printing

UConn, the University of Massachusetts Lowell (UMass Lowell), and Georgia Institute of Technology (Georgia Tech) announced a collaboration to establish SHAP3D, a National Science Foundation (NSF) Industry-University Cooperative Research Center (IUCRC), to address emerging challenges of additive manufacturing, also commonly referred to as 3D printing.

IUCRCs bridge the gap between early academic research and commercial readiness, supporting use-inspired research leading to new knowledge, technological capabilities and downstream commercial applications of these technologies.

“This Center will address the grand challenges that prevent the entire 3D printing field from moving forward,” says Joey Mead, Distinguished University Professor and David and Frances Pernick Nanotechnology Professor in the Department of Plastics Engineering at UMass Lowell. Mead serves as the center director of the Center for Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D).  Read the full UConn Today Story.

Luyi Sun Awarded Spring 2016 Scholarship Facilitation Fund Award

By Rhonda Ward

Dr. Luyi Sun
Dr. Luyi Sun

Dr. Luyi Sun is the recipient of a Spring 2016 Scholarship Facilitation Fund Award from the Office of the Vice President. for Research for Publication in Nature Communications, a Premium Open-access Journal for Maximum Impact. The Office of the Vice President for Research provides financial support up to $2,000 to faculty across all disciplines, on a competitive basis, to promote, support, and enhance the research, scholarship and creative endeavors of faculty at UConn. The Scholarship Facilitation Fund (SFF) is designed to assist faculty in the initiation, completion, or advancement of research projects, scholarly activities, creative works, or interdisciplinary initiatives that are critical to advancing the faculty member’s scholarship and/or creative works.