As research conducted by UConn IMS faculty members creates more funding opportunities, the need to expand administrative services to support the increased funding has led IMS to hire two new administrative team members. Both Lisa Conant and Christina Tamburro come to UConn IMS from within the University.
Lisa Conant previously served as Pre-Award Grants and Contracts Specialist for the Sponsored Program Services (SPS) section of the Office of the Vice President of Research (OVPR). Lisa honed her financial skills in the non-profit social services and municipal sectors. She also provided her financial expertise to The Jackson Laboratory. An avid writer and editor in her personal time, Lisa also loves trying new international recipes. She served her community in Coventry, CT, as an elected town council member for four years and currently serves on the town’s Human Rights Commission. Lisa hopes her years of grants and research administration experience and skills will help support and grow IMS’ already incredibly impressive success in winning research grants and contracts. “My goal is to serve as a resource for IMS faculty and staff in all things pre-award,” Lisa says.
Christina Tamburro comes to us from the College of Agriculture, Health and Natural Resources (CAHNR) where she served briefly as Business Operations Specialist before returning to her passion for finance here in IMS. Prior to her time in CAHNR, Christina served as a Post-Award Grants and Contracts Specialist for SPS. Christina loves cooking and baking. She won second prize in the Connecticut State Agricultural Fairs statewide apple pie contest in 2005. Additionally, Christina describes herself as a “history nut” with particular interest in the American Civil War and colonial New England. She hopes to contribute additional expertise, enthusiasm and understanding to the grant management process here at IMS. “I am looking forward to working closely with grant holders, sponsors, and connections throughout the university to extend IMS’ outstanding reputation,” Christina says.
Please join all of us at IMS in welcoming Lisa and Christina.
Established in 2010, the DOE Office of Science Early Career Research Program supports the individual research programs of outstanding scientists early in their careers and stimulates research careers in the disciplines supported by the DOE Office of Science: Advanced Scientific Computing Research (ASCR), Biological and Environmental Research (BER), Basic Energy Sciences (BES), Fusion Energy Sciences (FES), High Energy Physics (HEP), Isotope R&D and Production (IP), and Nuclear Physics (NP).
Among the 83 university and DOE national lab researchers announced as recipients of the award for 2022, Assistant Professor of Materials Science and Engineering Yuanyuan Zhu is the only Connecticut researcher to receive the honor. IMS News asked Dr. Zhu about her research and the award.
In 2019, you were appointed Director of the UConn DENSsolutions InToEM Center for in-situ TEM research at IPB Tech Park. You have since had papers published related to the research the Center is conducting. As we are seeing more and more evidence of the effects of climate change, how do you hope your research at the InToEM Center will assist in solving some of the problems we are now dealing with?
It’s a coincidence that the DENSsolutions’ ETEM gas cell system is named as “Climate”, because it involves gas environment for chemical reactions in a microscope. Another example is their liquid cell system, which is called “Stream” simply because the reaction stimuli involved.
There are many materials researches related to energy and environment, including climate change, that can benefit from the in-situ ETEM research. One immediate example is heterogeneous catalysis used for natural gas conversion and H2 production. And the fusion energy materials research funded by the DOE ECA is another good example.
Congratulations on receiving the Department of Energy’s Early Career Award for 2022. What are your hopes for your research on Understanding Thermal Oxidation of Tungsten and the Impact to Radiation Under Fusion Extremes?
Fusion energy holds great promise for replacing fossil fuels for 24/7 baseload electrical power. We are excited that the DOE Early Career Award will fund our in-situ ETEM study to directly address a well-known fusion safety hazard concerning aggressive high-temperature oxidation of plasma-facing material tungsten. We hope to gain fundamental understanding of tungsten degradation in case of air-ingress scenarios that could inform the best strategy for responding to accidents, and could guide the design of advanced W-based materials that better preserve divertor integrity for even more demanding DEMO fusion extremes. Simply put it, we want to make the operation of fusion energy systems safer and more reliable.
You have several Ph.D. candidates under your advisement. How do you hope to influence these young scientists?
Our research group provides a welcoming, supportive and inclusive working environment to drive personal success for each Ph.D. researcher. Through the first-hand work on such research projects closely to clean energy and sustainability, I believe our Ph.D. students will gain confidence and skills in research and also develop a solid sense of social responsibility.
We are seeing many more women represented in STEM. What advice would you give to young women who may be considering a career in science, technology, engineering and mathematics?
We need everyone in STEM, and anything is possible if one follows his/her/their passion. Research is fun but progress is built on failure and resilience.
Since its inception in 1989, the National Defense Science and Engineering Graduate (NDSEG) Fellowship has been awarded to only 4400 students. In that time, over 65,000 have applied. The highly competitive fellowship, sponsored by the Air Force Office of Scientific Research (AFOSR), the Army Research Office (ARO), and the Office of Naval Research (ONR), was established by the U.S. Congress to increase the number of U.S. citizens receiving doctoral degrees in science and engineering disciplines of military importance.
Materials Science and Engineering Ph.D. candidate Mason Freund has been named a recipient of this prestigious fellowship. IMS News spoke with Mason about his early interests in science and the catalysts and decisions leading to his being named a NDSEG Fellow.
You earned your Bachelor of Science degree in mechanical engineering with a concentration in aerospace engineering. In your pursuit of your Ph.D. your focus remains on aerospace science. When did you begin to be interested in aerospace science and what about aerospace science keeps you engaged?
I think there’s always been some interest in aerospace science starting from playing with toys and enjoying sci fi movies as a kid. This steered me towards spaceships and planes and slowly evolved into interest in the sciences and engineering. Finally, being able to learn about aerospace engineering during my undergrad seemed to bring everything together. And now being a fellow under the Air Force Office of Scientific Research (AFOSR) I will be able to interact with the field on a deeper level. I am constantly learning new information and techniques that keeps the learning experience engaging but there are also always new discoveries and ideas that keep pushing the known boundaries to something that is better, faster, or stronger. I think those new discoveries and possibilities will keep me engaged for a long time.
How/when did you begin to tie materials science into your interest in aerospace science?
The mechanical engineering curriculum requires an introduction to materials science. I didn’t know what the field of materials science was or could lead to, but I quickly became interested in learning more about the field. I decided to go for a minor and take courses that could add another dimension to my curriculum and benefit my aerospace science interests.
Congratulations on being named a 2022 DoD NDSEG Fellow. How did you come to apply for the NDSEG Fellowship and what was your reaction after learning you had been selected for the fellowship?
My advisor (Volkan Ortalan) made me aware of some different fellowships early on in my graduate studies. After doing more research over the course of last fall, I applied to a few different fellowships. Then came a long 4-6 month wait to April when the results were expected to come out. I checked my email one night at the end of March and was surprised to see an email from NDSEG. I was then even more surprised and excited to realize it was an acceptance letter. It was the first one I got back, and I wasn’t even expecting a letter for at least another few days. I was very excited and slightly caught off guard, but it made my night and my week.
Tell us about your research and its short- and long-term implications for real-world applications.
My group is primarily a microscopy group. We spend most time on transmission electron microscopes (TEM) in addition to other instruments and techniques. Our lab has a special ultrafast TEM which allows us to investigate reactions and dynamics at very short time scales. Specifically, my research will take advantage of these capabilities to investigate reaction dynamics of nano energetic materials to better understand behaviors from these materials as well as nanoparticle enhancement at the necessary timescales.
This work is useful for further insights into nano energetics and optimization for use in propellants and other related technologies as well as directly relating to programs within the AFOSR. The field of nano energetics plays a role in many propulsion applications as well as high power linear actuators. There are also possibilities for use in miniature applications such as micro or nano satellites. This research will provide a more fundamental understanding of the behaviors and can lead to better control, optimization, and performance of the technology.
After earning your bachelor’s degree, you chose to continue your graduate studies at UConn. What was the catalyst for your decision?
As I mentioned, I started my minor and was taking MSE courses throughout my time in undergraduate studies. In one of the MSE courses the professor was Dr. Ortalan who is now my advisor. He asked me what I was planning on doing after graduation. I knew that I might want to go back to graduate school eventually, but I was also initially looking for jobs in industry. He mentioned about his open position for a graduate student and about the work that would be required but also the benefits and investment that it would be for my future. This really was the catalyst for my decision. I would have taken it either way but graduating in 2020 at the beginning of the pandemic and hearing about difficulties in job hiring made the decision even easier.
REA Resource Recovery System, a company co-founded by Professor Emeritus of Chemical and Biomolecular Engineering Richard Parnas, is currently in Phase IV of the company’s plan to bring biofuel production to Danbury, CT. The construction of a 5000 square foot facility that will turn FOG (fats, oils, grease) into biofuel is nearly completed and the company has released video. The project is a partnership between the City of Danbury, REA Resource Recovery Systems LLC, Veolia Environment S.A., and the University of Connecticut.
Cato T. Laurencin, the University Professor and Albert and Wilda Van Dusen Distinguished Endowed Professor at the University of Connecticut will receive the 2023 Priestley Medal, the highest honor of the American Chemical Society.
He is recognized as the leading international figure in polymeric biomaterials chemistry and engineering who has made extraordinary scientific contributions, while at the same time he has had profound contributions to improving human health through the results of his work. While trained in polymeric chemistry, Laurencin’s overall training is broad and interdisciplinary. He received his B.S.E. in Chemical Engineering from Princeton University. He received his Ph.D. in Biochemical Engineering/Biotechnology from the Massachusetts Institute of Technology and simultaneously received his M.D., Magna Cum Laude from the Harvard Medical School. He then joined the faculty of the Massachusetts Institute of Technology and opened a polymer chemistry research laboratory. At the same time he trained and became a board certified orthopaedic surgeon.
Dr. Laurencin produced seminal work on polymeric nanofiber chemistry technology for biomedical purposes, heralding the new field. He pioneered the understanding and development of polymer-ceramic systems for bone regeneration for which the American Institute of Chemical Engineers named him one of the 100 engineers of the modern era at its Centennial celebration. In a three decade collaboration with Professor Harry Allcock at Penn State, Laurencin worked in the development of polyphosphazenes for biomedical purposes. Dr. Laurencin has had breakthrough achievements in the areas of materials chemistry and engineering of soft tissue implants for regeneration of tissue including the development of the Laurencin-Cooper (LC) Ligament for anterior cruciate ligament regeneration (knee). The development of the LC Ligament was highlighted by National Geographic Magazine in its “100 Discoveries that Changed the World” edition.
In his latest work, Dr. Laurencin has pioneered a new field, Regenerative Engineering, described as the Convergence of areas such as nanomaterials science and chemistry. His work has described the chemistry of signaling molecules for tissue regeneration and he published this work in Plos One (https://doi.org/10.1371/journal.pone.01016272014). He demonstrated the ability these molecules in combination with polymeric materials chemistry to induce tissue regeneration. In his most recent work he has used principles of polymer chemistry to create cell-like structures. This has allowed the creation of what is being considered a new class of stem cells: synthetic artificial stem cells (SASC). The work was recently published in the Proceedings of the National Academy of Sciences.
The impact of the new field has become clear. The NIH Awarded him their highest and most prestigious award, the NIH Director’s Pioneer Award for his field of Regenerative Engineering. The NSF awarded him their most transformative grant, the Emerging Frontiers in Research and Innovation Grant (EFRI) for Regenerative Engineering. Dr. Laurencin is the Editor-in-Chief of Regenerative Engineering and Translational Medicine, a journal published by Springer Nature. He is the Founder of the Regenerative Engineering Society (now a community of the American Institute of Chemical Engineers). The American Institute of Chemical Engineers Foundation created and endowed the Cato T. Laurencin Regenerative Engineering Founder’s Award honoring Dr. Laurencin’s work and legacy in this new field. He is the first individual to receive highest distinctions across science, engineering, medicine and technology for this work. In science, he received the Philip Hauge Abelson Prize from the American Association for the Advancement of Science awarded “for signal contributions to the advancement of science in the United States”. He was awarded both the highest/oldest honor of the National Academy of Engineering (the Simon Ramo Founders Award) and one of highest/oldest honors of the National Academy of Medicine (the Walsh McDermott Prize). And he received the National Medal of Technology and Innovation, our nation’s highest for technological achievement in ceremonies at the White House. Most recently, he received the 2021 Spingarn Medal given for the “highest or noblest achievement by a living African American during the preceding year or years in any honorable field.” The highest award of the NAACP, they stated “his exceptional career has made him the foremost engineer-physician-scientist in the world.”
Dr. Laurencin has also profoundly contributed to mentoring and fostering diversity. He has been responsible for the development of a generation of underrepresented engineers and scientists. In receiving the American Association for the Advancement of Science Mentor Award, it was noted that the majority of African-American faculty in bioengineering had been mentored by Laurencin. For his work in mentoring, he was honored by President Barack Obama with the Presidential Award for Excellence in Science, Math and Engineering Mentoring. Remarkably, he received the 2021 Hoover Medal given jointly by the American Institute of Chemical Engineers, the American Society of Mechanical Engineers (ASME), the American Society of Civil Engineers (ASCE), the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME) and the Institute of Electrical and Electronics Engineers (IEEE), The purpose of the medal is “to recognize great, unselfish, non-technical services by engineers to humanity.” Dr. Laurencin’s extraordinary commitment to inclusion, equity and fairness along with his legendary work in mentoring lead to his selection.
Dr. Laurencin’s life, career and philosophy are contained in his recently published biography entitled “Success is What You Leave Behind,” published by Elsevier.
The Office of the Vice President for Research (OVPR) recently announced the recipients of the 2022-23 SPARK Technology Commercialization Fund Program. Five recipients were selected for internal funding through the program. They include researchers from UConn and UConn Health.
SPARK supports innovative proof-of-concept studies seeking to translate research discoveries into products, processes, and other commercial applications. The program’s primary goal is advancing primary faculty inventions toward the market, where they can have a positive impact for UConn, society, and Connecticut’s economy.
The 2022-23 awardees competed for funding in a highly selective process. Congratulations to the following:
LaijunLai, UConn, Department of Allied Health Sciences Targeting TAPBPL in antitumor immune therapy
RamanBahal, UConn, Department of Pharmaceutical Science Liver- and Kidney-targeted delivery of next generation miRNA inhibitors using carbohydrate-based conjugates
EugenePinkhassik, UConn, Department of Chemistry/Institute of Materials Science Integration of palladium-catalyzed reactions in continuous manufacturing
AliTamayol, UConn Health, Department of Biomedical Engineering Engineering a Handheld One-step Foaming and Printing Device for the Treatment of Soft Tissue Injuries
LuyiSun, UConn, Department of Chemical and Biomolecular Engineering/Institute of Materials Science High Performance Nanocoatings for Packaging Applications
For more information about SPARK, visit the program website.
An ambitious team of researchers from across the University has won $3mn from the National Science Foundation to pursue a project in the neuroscience of learning.
The program, known as TRANSCEND: TRANSdisciplinary Convergence in Educational Neuroscience Doctoral training, aims to get graduate students from both classic and atypical backgrounds into educational neuroscience research.
“We will take an innovative approach and truly break the silos in educational neuroscience between lab research, research in the schools and the community. We also have a particularly strong focus not only on neurodiverse learners as the topic of research but also to involve them as graduate students. Neurodiverse learners are one of the most underrepresented groups in higher ed and the STEM workforce despite their tremendous talent,” says Fumiko Hoeft, interim director of the Waterbury campus, director of UConn’s Brain Imaging Research Center (BIRC) and the principal investigator on the project.
The team also includes co-principal investigators Assistant Professor of Educational Psychology Ido Davidesco, Associate Professor of Developmental Psychology Nicole Landi, Associate Professor of Civil and Environmental Engineering and IMS faculty member, Arash Esmaili Zaghi, and Professor of Clinical Psychology Inge-Marie Eigsti; and co-investigators Professor of Psychology James Magnuson, Professor of Mathematics Fabiana Cardetti, Professor of Computer Science and Engineering Jinbo Bi, and Vice Provost for Graduate Education Kent Holsinger. Hoeft and Landi will co-direct TRANSCEND.
TRANSCEND will use the grant to allow second year graduate students to spend a full year researching convergent questions in educational neuroscience, with an emphasis on virtuous cycles between school and lab-based research, interdisciplinary team science, and in all areas of learning such as STEM and reading as well as developing the next generation of learning technologies using artificial intelligence (AI), with an underlying theme of neurodiversity.
The hope is that the students will then stay in the program and continue research on their topic of choice for their dissertation. Graduate students can be from any field of cognitive science, neuroscience, educational psychology, mathematics, computer science, and engineering. All graduate students in the program will have the opportunity to collect data in classrooms and in UConn labs, including the BIRC, the Cognitive Sciences Shared Electrophysiology Resource Lab, and the new mobile neuroscience lab by the College of Liberal Arts and Sciences that is planned to come online by this winter.
Community engagement will be key for generating project ideas and at every step of the process; graduate students will research questions that communities and teachers want answered. Leveraging Hoeft’s new position at
UConn Waterbury and this grant, she hopes to engage the Waterbury students and the community to bring new programs and collaboration to the campus.
For example, a team of students from computer science, educational psychology and cognitive neuroscience may develop a learning technology leveraging AI and natural language processing models, using accessible neuroimaging technologies such as portable electroencephalography, in partnership with an education technology company and a school.
“We want every STEM and Education grad student in the University to know they can join this. The funding is for their second year, but we want the graduate students to stay involved in the program throughout graduate school,” says Arash Zaghi, a structural engineering professor.
Zaghi began researching neurodiversity when he was diagnosed with ADHD early in his career as an engineer. He found that there was a lot of research showing great creative potential from neurodiverse people, but also great difficulties that lead them to drop out of university settings. Part of the motivation behind this collaboration is to generate strategies that both teachers and students can use to create strength and success from neurodiversity.
Hoeft and Zaghi also emphasize that neurodiverse students are strongly encouraged to apply. The team has partnership with universities in the NSF INCLUDES national network such as Landmark College, a college for students with learning disabilities. They hope to attract their students into graduate school at UConn through this grant. There are also almost 40 other partners, including schools, the Connecticut Department of Education, advocacy groups, and technology companies, all of whom are interested in gaining interns from the program and participating in research through partnership with UConn. Through this program, their hope is that neuroscience can help design and deliver education that helps all students reach their full potential, and at the same time enhance the STEM workforce.
Three new grants totaling $7.5 million from ARPA-E and the U.S. Department of Energy (DOE) are enabling UConn researchers to conduct ground-breaking work on some of the nation’s most pressing energy problems.
Advanced Research Projects Agency-Energy (ARPA-E) grants provide funding for the development of transformational technologies that provide new ways of generating, storing, and using energy.
Shrinking Substations for Green Energy Integration
Yang Cao, a professor in the School of Engineering, is working on a three-year ARPA-E project to create a new technology that will help stabilize the power grid and integrate renewable energy sources into the existing energy infrastructure.
Substations are sprawling networks of wires, towers, and transformers. Substations change the high voltage that comes directly from energy generation stations into low voltage that can safely be delivered to homes or businesses.
The century-old energy infrastructure in the United States is prone to power outages, especially during increasingly common severe weather.
This infrastructure is also poorly suited to renewable energy sources as they were designed for fossil fuels.
With something like wind or solar energy, the energy sources are spread out across a huge expanse rather than coming from a neatly packaged oil barrel. Solar panels or wind turbines also tend to be in remote areas far from major cities that have massive electrical needs. This means we need more efficient technologies that can link distributed energy generators to urban areas.
Cao will work with Virginia Tech on the project, titled Substation in a Cable for Adaptable, Low-cost Electrical Distribution (SCALED), to develop high-voltage cables to replace bulky substations.
“We need a more versatile and compact conversion and integration solution for distributed renewable energies,” Cao says. “This overall project is targeting that.”
Making something this compact will be highly advantageous as they can be placed almost anywhere, whereas current substations require a tremendous amount of open space.
The goal of the project is to greatly reduce the footprint of substation technologies without compromising its effectiveness.
“We could really have a very compact substation that helps to convert and integrate the distributed energy generation into a grid instead of having really large, bulky substations,” Cao says.
A Better Path for New Materials
Nate Hohman, assistant professor of chemistry, is working on a new DOE grant to develop artificial intelligence (AI) tools to improve the synthesis of new materials.
While scientists are constantly innovating new materials for energy, biotechnology, and many other applications, currently, the best tool they have at their disposal for this process is trial and error.
“Engineering a new hypothetical material today requires guesswork at every step,” Hohman says. “We guess what compounds might crystallize into a structure that may have a property of interest, hope we get the material we expected, and pray it has the properties we imagined. This is inefficient, labor intensive, and has a low likelihood of success.”
Hohman will combine nano-crystallographic characterization with Euclidean neural networks to develop a better technique for real-time characterization of materials using a continuously variable model material system.
Crystal characterization allows scientists to see how the atoms that make up a molecule are arranged. This information is critical for designing new materials as this structure is what determines what the material can do.
Hohman recently found a way to study crystal structure using an X-ray beam. This allowed his team to capture a crystal’s single diffraction pattern and merged them into a data set they can use to determine the atomic structure. This speeds up the process of characterizing new materials from months or even years to just hours.
Euclidean neural networks are artificial neural networks inspired by the human brain. A set of artificial neurons transmits signals to other neurons in the system in order to classify objects. Hohman’s collaborator Tess Smidt at MIT developed Euclidean neural networks that can handle 3-D geometries, like those of molecules.
Hohman in collaboration with other synthetic materials scientists, computational crystallographers, and deep learning researchers will use these networks to train machine learning algorithms to predict new phases of materials. This will help eliminate guesswork from materials development.
Hohman will have the neural networks will help scientists design and generate novel atomic geometries with desirable properties based on what the scientists want the material to do.
Designing for High Heat
Julián Norato, associate professor of mechanical engineering, is working on an ARPA-E grant to develop computational techniques to design highly efficient and compact heat exchangers.
Heat exchangers are mechanical devices that transfer heat from a hot to a cold fluid. They are found in everything from air conditioners to space heaters to chemical plants to airplanes.
The heat exchangers Norato’s group will focus on operate at temperatures above 1100 degrees Celsius (approximately 2000 degrees Fahrenheit). These high-temperature heat exchangers are used in many applications, including gas turbine engines, waste heat recovery and hydrogen production.
The grant will focus on plate-and-frame heat exchangers, which consist of stacks of plates bolted together to a frame. The hot and cold fluids flow between alternate plates. Each plate has a pattern of obstacles to the flow embossed on one side. This helps increase the amount of heat transferred from the hot fluid to the plates, and to the cold fluid flowing through the adjacent plates.
“The fluid is forced to go through the flow structures inside the plates,” Norato says. “Essentially, you’re putting obstacles to the fluid to force it to mix and spend more time going from the inlet to the outlet of the plate.”
What these obstacles look like will determine how efficient the heat transfer is. The computational techniques that Norato’s group will formulate will determine the optimal shape and pattern of these obstacles to maximize the heat transfer. At the same time, the design must ensure the pressure drop the fluid experiences as it flows through a plate is kept to a minimum, and that the plates can sustain the pressure the fluid exerts at the high operating temperatures.
The researchers are also interested in making the device as small and light as possible, which is especially important in aerospace applications that have space and weight restrictions.
The project will be conducted in collaboration with Altair Engineering, whose computational fluid dynamics software the researchers will use to simulate the heat transfer and the mechanical behavior of the heat exchanger.
Norato will also collaborate with researchers from Michigan State University, who have developed an additive manufacturing technique to efficiently 3D print the heat exchanger plates out of a metal alloy that can operate at high temperatures. They will 3D print the plate designs obtained by the computational techniques developed by Norato and test the performance and integrity of the heat exchanger in an experimental setup.
Dr. Cato T. Laurencin, University Professor at the University of Connecticut, has been honored by the American Orthopaedic Association (AOA) with its Distinguished Contributions to Orthopaedics Award adding him to its AOA Award Hall of Fame.
Laurencin, the Albert and Wilda Van Dusen Distinguished Professor of Orthopaedic Surgery at UConn School of Medicine, was selected for the special recognition by his AOA member peers for his remarkable personal achievement and contributions to orthopaedic surgery.
He accepted the award the evening of June 15 at the AOA’s Annual Leadership Meeting at the Rhode Island Convention Center in Providence. “I am so honored to accept the American Orthopaedic Association Distinguished Contributions to Orthopaedics Award and be recognized in the AOA Awards Hall of Fame. I feel so fortunate to be an orthopaedic surgeon.”
The AOA Distinguished Contributions to Orthopaedics (DCO) Award recognizes Laurencin for his personal achievement and broad contribution to the orthopaedic specialty, leadership, impact on patient care, and clinical and basic science research. The mission of the AOA is engaging the orthopaedic community to develop leaders, strategies and resources to guide the future of musculoskeletal care.
In addition to being a practicing sports medicine and shoulder surgeon consistently named to America’s Top Doctors list, Laurencin is a world-renowned surgeon-engineer-scientist and a pioneer of the field of regenerative engineering.
In fact, Laurencin is leading the first international effort ever for knee and limb engineering with his Hartford Engineering a Limb (HEAL) project which aims at regenerating a human limb by 2030. The National Institutes of Health and the National Science Foundation currently fund this research work through Laurencin’s large grant awards including the NIH Director’s Pioneer Grant Award and the National Science Foundation’s Emerging Frontiers in Research and Innovation Grant Award.
In orthopaedic surgery, Laurencin has been the first to win the “trifecta” of orthopaedic research lifetime awards: the Nicolas Andry Award from the Association of Bone and Joint Surgeons, the Marshall R. Urist Award from the Orthopaedic Research Society, and the Kappa Delta Award from the American Academy of Orthopaedic Surgeons.
Nationally, Laurencin is the first surgeon in history to be elected to all four national academies: the National Academy of Sciences, the National Academy of Engineering, the National Academy of Medicine, and the National Academy of Inventors. He is an elected fellow of the American Academy of Arts and Sciences and an elected fellow of the American Association for the Advancement of Science.
Laurencin is a laureate of the National Medal of Technology and Innovation, America’s highest honor for technological achievement, awarded by President Barack Obama at the White House. He is the recipient of the prestigious Spingarn Medal, the highest honor of the NAACP bestowed upon such Americans as Martin Luther King Jr., Maya Angelou, George Washington Carver, Jackie Robinson, and Duke Ellington.
At UConn Laurencin is also a professor of chemical engineering, materials science and engineering, and biomedical engineering and serves as CEO of The Connecticut Convergence Institute for Translation in Regenerative Engineering. He has received the highest honors in engineering, medicine and science, including the Philip Hauge Abelson Prize given for “signal contributions to the advancement of science in the United States.” The American Institute of Chemical Engineers recently established the Cato T. Laurencin Regenerative Engineering Founder’s Award in honor of his breakthrough achievements in that field.
Laurencin received his BSE in chemical engineering from Princeton University, his MD, magna cum laude from the Harvard Medical School, and his Ph.D. in biochemical engineering/biotechnology from the Massachusetts Institute of Technology.
Anna Tarakanova has long had an interest in how objects and bodies work. Her chosen specialty in the field of Mechanical Engineering – studying the structure, function, and mechanics of biological systems and materials, especially fibrous protein materials such as elastin and collagen – merges the two.
The assistant professor of mechanical engineering and her team are working to establish a high-fidelity modeling framework for both healthy and degenerated elastins for use as a tool to resolve different pathological stressors affecting how elastin functions from a nanoscale.
During aging and with chronic, often age-related illnesses such as diabetes, cardiovascular disease, and osteoarthritis, elastin can degenerate, causing a decline in normal function. Elastin is an essential structural protein that gives the skin, heart, blood vessels, and other elastic tissues in the body the stretchy quality they need to function.
“At the molecular scale, there are a number of physical-chemical modifications that occur that drive this mechanical degeneration over time,” Tarakanova says. “Because they are quite numerous and act in parallel, it’s difficult to deconstruct which triggers impact mechanics and to what degree. If we can understand the mechanism, we can think about novel therapies to target aging and aging-associated diseases.”
Tarakanova’s work has earned her a 2022 Early Career Development (CAREER) Award from the National Science Foundation. She is one of 11 junior faculty members at UConn this year to receive the coveted award, which recognizes the recipient’s potential as a role model in education and research.
CAREER Awards come with five years of funding intended to provide a foundation for a young professor’s research program. Beyond advancing her research, Tarakanova plans to use the funding to create activities and events to engage and support undergraduate and graduate students, especially those from underrepresented groups. The effort will include a reboot of a Women In STEM Frontiers in Research Expo she co-organized with a colleague in January 2020.
“For me, it was kind of a natural extension of what I wanted to do as a professor, being a woman in STEM and being a minority for most of my education career,” Tarakanova says.
Elastin and collagen are not the only protein materials getting her attention. Early in the pandemic, Tarakanova and two of her graduate students began exploring the spike protein associated with SARS-CoV-2 to figure out how it moved when it interacted with the immune system. She is now working with Paulo Verardi, a pathobiologist in UConn’s College of Agriculture, Health and Natural Resources, and UConn biochemist Simon White to develop new and potentially better ways to stabilize spike proteins for use in COVID-19 vaccines, particularly in relation to emerging new variants of the virus.
“Some of the methods we are using to study the spike protein are related to the methods that we’ve used and continue to use to look at elastin,” she says. “It’s a different project, but it does broadly fall under this fusing of computing and computational models, physics, biomechanics, and biochemistry to understand the dynamic behavior of the COVID spike protein, the protein that sits on part of the corona.”