IMS Faculty Members

Yu Lei Invents Low-Abundance Biomarker Detection Platform for Early Diagnosis

from UConn Today

Dr. Yu Lei
Dr. Yu Lei

Yu Lei, professor of chemical and biomolecular engineering, has invented a new platform that can perform high-sensitivity readings for a variety of disease biomarkers.

In the 1970s, scientists invented the enzyme-linked immunosorbent assay (ELISA). Since then, ELISA has been the standard for detecting biomarkers.

Biomarkers are molecules present in the body that indicate the presence or severity of a disease. For example, autoantibodies can help detect autoimmune diseases, or a peptide known as amyloid-β can indicate Alzheimer’s disease.

One of the major limitations for ELISA is that if there is a low concentration of the molecule of interest, it cannot detect it. Lei’s invention addresses this problem by adding two amplification steps to ELISA’s process.

“We wanted to bridge the need for ultra-sensitivity, and also compatibility with the existing plate-based platform,” Lei says.

ELISA works using a “sandwich” of two antibodies specifically designed to capture/detect the biomarker of interest between them. One of these antibodies has an enzyme attached to it that will produce a readable signal when it encounters the substrate.

Lei introduced a two-step amplification to the ELISA reaction. Lei first added a tyramide signal amplification (TSA) process to amplify the signal of a low abundance biomarker. In Lei’s platform, the TSA step anchors numerous biotins onto the immunocomplexes. Lei then introduced the reporter enzyme alkaline phosphate (ALP) conjugated with streptavidin, which attaches to the biotins through the strong interaction between biotin and streptavidin.

Dr. Lei's Research
Lei’s technology advances traditional ELISA kits through the addition of two novel steps. (Yu Lei Provided image)

Lei added an ELFA-saturated ELFP substrate that ALP breaks down to produce a fluorescent signal. These molecules that precipitate through the system to form a readable layer consisting of fluorescent needles that a microscope captures as a series of images and counts. This fluorescent microneedle count corresponds to how much of the biomarker is in the sample.

“That’s the beauty of the system using ELFA-saturated ELFP substrate and counting-based method, we achieved rapid detection and at the same time no matter your initial number of target molecules their precipitating time is starting from the same point,” Lei says.

Lei successfully demonstrated that his process was able to achieve a resolution of 50 to 60 picograms per milliliter. This is about 20 times more sensitive than traditional ELISA using the same commercial ELISA kit.

Lei published his findings in the March issue of Analytica Chimica Acta.

This advancement could be extremely useful for early-stage detection of diseases and treatment.

“A lot of disease detection occurs when symptoms are already onset,” Lei says. “That biomarker concentration is already very high. So then, if we can detect at a very low concentration, we can capture the earliest stage and treatment may be more effective.”

Lei says the next step for this technology is to smoothly integrate it into conventional plate-based ELISA systems. This would allow the process, which currently takes about four hours for low-abundance biomarker detection, to be much faster by using advanced imaging systems.

Designing a Lighter, Denser Fuel Cell

from UConn Today

Fuel Cells
Fuel cells are a promising direction for cleaner energy, and a team of UConn researchers is working to improve their design (Adobe Stock).

Fuel cell technology is continuously evolving as renewable energy and alternate energy sources become an increasingly important means of reducing global dependence on fossil fuels. Planar fuel cells, a prevalent design, can be bulky, have compression issues, and uneven current distribution. Other drawbacks include problems with reactant gas transport, excess water removal, and fabrication challenges associated with their design.

A team of UConn researchers led by Jasna Jankovic, an assistant professor in the Department of Materials Science and Engineering in the School of Engineering, has devised a novel design for a tubular polymer electrolyte membrane (PEM) fuel cell that addresses those shortcomings and improves on existing tubular PEM fuel cell designs, most of which take a planar PEM fuel cell and curl it into a cylinder.

Jankovic and two grad students, Sara Pedram and Sean Small, took a more holistic approach that rethinks tubular fuel cell design from the ground up. Their disruptive, patent-pending concept could potentially have nearly twice the energy density of other tubular PEM fuel cells, be 50 percent lighter, have a replaceable inner electrode and electrolyte (if liquid), a leak-proof configuration, and require fewer precious metals.

That’s a big deal, says Michael Invernale, a senior licensing manager at UConn’s Technology Commercialization Services (TCS) working with Jankovic to bring the concept to market. Much of the effort to improve fuel cell design, he says, has focused on the end user instead of the greater good.

“A fuel cell with refillable components is a kind of solution that does that,” says Invernale.  “An airline relying on this technology would have more incentive to rebuild a component. Right now, it might be cheaper to replace the whole unit. That’s really where this design shines. The features of the design are green and sustainable and renewable.”

Fuel cells are essentially refuelable electrochemical power generation devices that combine hydrogen and oxygen to generate electricity, heat, and water. Each type is classified primarily by the kind of electrolyte it uses. Planar fuel cells are constructed using sandwich-like stacks of large, rectangular flow field plates made of graphite or metal, which account for about 80 percent of their weight and 40 percent of their cost. UConn’s design uses a single tube-shaped flow field that reduces its weight by half.

Jasna Jankovic
Dr. Jasna Jankovic

The concept is still in discovery and has I-Corps and Partnership for Innovation (PFI) funding from the National Science Foundation (NSF). The program was created to spur the translation of fundamental research to the marketplace, encourage collaboration between academia and industry, and train NSF-funded faculty, students, and other researchers in innovation and entrepreneurship skills.

Participating research teams have the opportunity to interview potential customers to learn more about their needs. Jankovic and her team conducted some 60 interviews during a UConn Accelerator program in early 2022 that helped them size up the market and answer important questions about whether or not to start a longer process, make the product themselves, or license the technology to another company.

“It was very useful to get feedback and guidance from people in industry” Jankovic says.

Jankovic led the team as PI, with Pedram and Small, acting as Entrepreneurial Lead and Co-Lead respectively. Lenard Bonville, the team’s industrial mentor, will support the team with his decades of industrial experience. The team will conduct another set of 100 interviews with industry to discover the market for their product and get guidance on its final design. NSF-Partnership for Innovation (PFI) funding will then be used to develop a prototype and pursue commercialization.

Fuel cells have a wide range of applications, from powering  homes and businesses, to keeping critical facilities like hospitals, grocery stores, and data centers up and running, and moving a variety of vehicles, including cars, buses, trucks, forklifts, trains, and more. Jankovic’s team is working toward obtaining a full patent on their design and thoroughly testing the concept. In the short term, they are focused on commercializing the technology and attracting potential partners.

Jankovic envisions creating a fuel cell roughly the size of a AA battery however, as a scalable and modular technology, it could be scaled-up to any practical size. The cylindrical shape would allow for more fuel cells to occupy the same amount of space as those in use now and be cheaper to manufacture, Invernale said. Jankovic views her fuel cell design as a replacement for Lithium-Ion batteries.

Jankovic said her seven years in industry before coming to UConn convinced her there was a need in the market for a new and better fuel cell design.

“From that experience, I knew that planar fuel cells had a few issues,” she says. “I kept asking around, and I said, ‘let’s do it and find out yes or no.”

Dr. Cato Laurencin Publishes Breakthrough Report on Rotator Cuff Regeneration Treatment

from UConn Today

Cato Laurencin
Dr. Cato Laurencin

A new way to regenerate muscle could help repair the damaged shoulders of millions of people every year. The technique uses advanced materials to encourage muscle growth in rotator cuff muscles. Dr. Cato Laurencin and his team reported the findings in the Proceedings of the National Academy of Sciences (PNAS) August 8th issue.

Tears of the major tendons in the shoulder joint, commonly called the rotator cuff, are common injuries in adults. Advances in surgery have made ever better rotator cuff repairs possible. But failure rates with surgery can be high.  Now, a team of researchers from the UConn School of Medicine led by Laurencin, a surgeon, engineer and scientist, reports that a graphene/polymer matrix embedded into shoulder muscle can prevent re-tear injuries.

“Most repairs focus on the tendon,” and how to reattach it to the bone most effectively, Laurencin says. “But the real problem is that the muscle degenerates and accumulates fat. With a tear, the muscle shrinks, and the body grows fat in that area instead. When the tendon and muscle are finally reattached surgically to the shoulder bone, the weakened muscle can’t handle normal stresses and the area can be re-injured again.

Dr. Laurencin along with graduate student Nikoo Shemshaki worked with other UConn Connecticut Convergence Institute researchers to develop a polymer mesh infused with nanoplatelets of graphene. When they used it to repair the shoulders of rats who had chronic rotator cuff tears with muscle atrophy, the muscle grew back. When they tried growing muscle on the mesh in a petri dish in the lab, they found the material seemed to encourage the growth of myotubes, precursors of muscle, and discourage the formation of fat.

“This is really a potential breakthrough treatment for tears of the rotator cuff. It addresses the real problem: muscle degeneration and fat accumulation,” Laurencin says.

The next step in their work is studying the matrix in a large animal. The team looks forward to developing the technology in humans.

This work was funded by NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant No. DP1AR068147 and National Science Foundation Emerging Frontiers in Research and Innovation Grant No. 1332329.

Department of Energy Early Career Award Recipient Yuanyuan Zhu

Yuanyuan Zhu
Dr. Yuanyuan Zhu is the only Connecticut recipient of the DOE Early Career Award for 2022.

Established in 2010, the DOE Office of Science Early Career Research Program supports the individual research programs of outstanding scientists early in their careers and stimulates research careers in the disciplines supported by the DOE Office of Science: Advanced Scientific Computing Research (ASCR), Biological and Environmental Research (BER), Basic Energy Sciences (BES), Fusion Energy Sciences (FES), High Energy Physics (HEP), Isotope R&D and Production (IP), and Nuclear Physics (NP).

Among the 83 university and DOE national lab researchers announced as recipients of the award for 2022, Assistant Professor of Materials Science and Engineering Yuanyuan Zhu is the only Connecticut researcher to receive the honor.  IMS News asked Dr. Zhu about her research and the award.

In 2019, you were appointed Director of the UConn DENSsolutions InToEM Center for in-situ TEM research at IPB Tech Park.  You have since had papers published related to the research the Center is conducting.  As we are seeing more and more evidence of the effects of climate change, how do you hope your research at the InToEM Center will assist in solving some of the problems we are now dealing with?

Yes, we have published a couple of papers since 2019 using the in-situ environmental TEM gas cell. Here you can find our full publications: https://scholar.google.com/citations?hl=en&user=HlDqamcAAAAJ&view_op=list_works&sortby=pubdate .

It’s a coincidence that the DENSsolutions’ ETEM gas cell system is named as “Climate”, because it involves gas environment for chemical reactions in a microscope. Another example is their liquid cell system, which is called “Stream” simply because the reaction stimuli involved.

There are many materials researches related to energy and environment, including climate change, that can benefit from the in-situ ETEM research. One immediate example is heterogeneous catalysis used for natural gas conversion and H2 production. And the fusion energy materials research funded by the DOE ECA is another good example.

Congratulations on receiving the Department of Energy’s Early Career Award for 2022.  What are your hopes for your research on Understanding Thermal Oxidation of Tungsten and the Impact to Radiation Under Fusion Extremes?

Fusion energy holds great promise for replacing fossil fuels for 24/7 baseload electrical power. We are excited that the DOE Early Career Award will fund our in-situ ETEM study to directly address a well-known fusion safety hazard concerning aggressive high-temperature oxidation of plasma-facing material tungsten. We hope to gain fundamental understanding of tungsten degradation in case of air-ingress scenarios that could inform the best strategy for responding to accidents, and could guide the design of advanced W-based materials that better preserve divertor integrity for even more demanding DEMO fusion extremes. Simply put it, we want to make the operation of fusion energy systems safer and more reliable.

You have several Ph.D. candidates under your advisement.  How do you hope to influence these young scientists?

Our research group provides a welcoming, supportive and inclusive working environment to drive personal success for each Ph.D. researcher. Through the first-hand work on such research projects closely to clean energy and sustainability, I believe our Ph.D. students will gain confidence and skills in research and also develop a solid sense of social responsibility.

We are seeing many more women represented in STEM.  What advice would you give to young women who may be considering a career in science, technology, engineering and mathematics?

We need everyone in STEM, and anything is possible if one follows his/her/their passion. Research is fun but progress is built on failure and resilience.

 

Cato T. Laurencin Named 2023 Priestley Medalist

from UConn Today

Dr. Cato Laurencin
Scientist and engineer, Dr. Cato T. Laurencin, has been honored for seminal and lasting research benefiting humankind.

Cato T. Laurencin, the University Professor and Albert and Wilda Van Dusen Distinguished Endowed Professor at the University of Connecticut will receive the 2023 Priestley Medal, the highest honor of the American Chemical Society.

He is recognized as the leading international figure in polymeric biomaterials chemistry and engineering who has made extraordinary scientific contributions, while at the same time he has had profound contributions to improving human health through the results of his work. While trained in polymeric chemistry, Laurencin’s overall training is broad and interdisciplinary. He received his B.S.E. in Chemical Engineering from Princeton University. He received his Ph.D. in Biochemical Engineering/Biotechnology from the Massachusetts Institute of Technology and simultaneously received his M.D., Magna Cum Laude from the Harvard Medical School. He then joined the faculty of the Massachusetts Institute of Technology and opened a polymer chemistry research laboratory. At the same time he trained and became a board certified orthopaedic surgeon.

Dr. Laurencin produced seminal work on polymeric nanofiber chemistry technology for biomedical purposes, heralding the new field. He pioneered the understanding and development of polymer-ceramic systems for bone regeneration for which the American Institute of Chemical Engineers named him one of the 100 engineers of the modern era at its Centennial celebration. In a three decade collaboration with Professor Harry Allcock at Penn State, Laurencin worked in the development of polyphosphazenes for biomedical purposes. Dr. Laurencin has had breakthrough achievements in the areas of materials chemistry and engineering of soft tissue implants for regeneration of tissue including the development of the Laurencin-Cooper (LC) Ligament for anterior cruciate ligament regeneration (knee). The development of the LC Ligament was highlighted by National Geographic Magazine in its “100 Discoveries that Changed the World” edition.

In his latest work, Dr. Laurencin has pioneered a new field, Regenerative Engineering, described as the Convergence of areas such as nanomaterials science and chemistry. His work has described the chemistry of signaling molecules for tissue regeneration and he published this work in Plos One (https://doi.org/10.1371/journal.pone.01016272014). He demonstrated the ability these molecules in combination with polymeric materials chemistry to induce tissue regeneration.  In his most recent work he has used principles of polymer chemistry to create cell-like structures. This has allowed the creation of what is being considered a new class of stem cells: synthetic artificial stem cells (SASC). The work was recently published in the Proceedings of the National Academy of Sciences.

The impact of the new field has become clear. The NIH Awarded him their highest and most prestigious award, the NIH Director’s Pioneer Award for his field of Regenerative Engineering. The NSF awarded him their most transformative grant, the Emerging Frontiers in Research and Innovation Grant (EFRI) for Regenerative Engineering. Dr. Laurencin is the Editor-in-Chief of Regenerative Engineering and Translational Medicine, a journal published by Springer Nature. He is the Founder of the Regenerative Engineering Society (now a community of the American Institute of Chemical Engineers). The American Institute of Chemical Engineers Foundation created and endowed the Cato T. Laurencin Regenerative Engineering Founder’s Award honoring Dr. Laurencin’s work and legacy in this new field. He is the first individual to receive highest distinctions across science, engineering, medicine and technology for this work. In science, he received the Philip Hauge Abelson Prize from the American Association for the Advancement of Science awarded “for signal contributions to the advancement of science in the United States”.  He was awarded both the highest/oldest honor of the National Academy of Engineering (the Simon Ramo Founders Award) and one of highest/oldest honors of the National Academy of Medicine (the Walsh McDermott Prize). And he received the National Medal of Technology and Innovation, our nation’s highest for technological achievement in ceremonies at the White House.  Most recently, he received the 2021 Spingarn Medal given for the “highest or noblest achievement by a living African American during the preceding year or years in any honorable field.”  The highest award of the NAACP, they stated “his exceptional career has made him the foremost engineer-physician-scientist in the world.”

Dr. Laurencin has also profoundly contributed to mentoring and fostering diversity. He has been responsible for the development of a generation of underrepresented engineers and scientists. In receiving the American Association for the Advancement of Science Mentor Award, it was noted that the majority of African-American faculty in bioengineering had been mentored by Laurencin. For his work in mentoring, he was honored by President Barack Obama with the Presidential Award for Excellence in Science, Math and Engineering Mentoring. Remarkably, he received the 2021 Hoover Medal given jointly by the American Institute of Chemical Engineers, the American Society of Mechanical Engineers (ASME), the American Society of Civil Engineers (ASCE), the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME) and the Institute of Electrical and Electronics Engineers (IEEE), The purpose of the medal is “to recognize great, unselfish, non-technical services by engineers to humanity.” Dr. Laurencin’s extraordinary commitment to inclusion, equity and fairness along with his legendary work in mentoring lead to his selection.

Dr. Laurencin’s life, career and philosophy are contained in his recently published biography entitled “Success is What You Leave Behind,” published by Elsevier.

OVPR Announces SPARK Technology Commercialization Fund Recipients for 2022-23

from UConn Today

Eugene Pinkhassik
Dr. Eugene Pinkhassik

Luyi Sun
Dr. Luyi Sun

The Office of the Vice President for Research (OVPR) recently announced the recipients of the 2022-23 SPARK Technology Commercialization Fund Program.  Five recipients were selected for internal funding through the program. They include researchers from UConn and UConn Health.

SPARK supports innovative proof-of-concept studies seeking to translate research discoveries into products, processes, and other commercial applications. The program’s primary goal is advancing primary faculty inventions toward the market, where they can have a positive impact for UConn, society, and Connecticut’s economy.

The 2022-23 awardees competed for funding in a highly selective process. Congratulations to the following:

Laijun Lai, UConn, Department of Allied Health Sciences
Targeting TAPBPL in antitumor immune therapy

Raman Bahal, UConnDepartment of Pharmaceutical Science
Liver- and Kidney-targeted delivery of next generation miRNA inhibitors using carbohydrate-based conjugates

Eugene Pinkhassik, UConnDepartment of Chemistry/Institute of Materials Science
Integration of palladium-catalyzed reactions in continuous manufacturing

Ali Tamayol, UConn HealthDepartment of Biomedical Engineering
Engineering a Handheld One-step Foaming and Printing Device for the Treatment of Soft Tissue Injuries

Luyi Sun, UConnDepartment of Chemical and Biomolecular Engineering/Institute of Materials Science
High Performance Nanocoatings for Packaging Applications

For more information about SPARK, visit the program website.

Multidisciplinary Team Wins $3M for Graduate Program

from UConn Today

Multidisciplinary Team Wins $3M for Graduate Program
Arash Esmaili Zaghi, left, associate professor of civil and environmental engineering, left, Fabiana Cardetti, professor of mathematics, and Jie Luo, a graduate student, with the fMRI, and Fumiko Hoeft, professor of psychological sciences, Nicole Landi, associate professor of psychological sciences, are in the control room at the UConn Brain Imaging Research Center on March 7, 2022. (Peter Morenus/UConn Photo)

An ambitious team of researchers from across the University has won $3mn from the National Science Foundation to pursue a project in the neuroscience of learning.

The program, known as TRANSCEND: TRANSdisciplinary Convergence in Educational Neuroscience Doctoral training, aims to get graduate students from both classic and atypical backgrounds into educational neuroscience research.

“We will take an innovative approach and truly break the silos in educational neuroscience between lab research, research in the schools and the community. We also have a particularly strong focus not only on neurodiverse learners as the topic of research but also to involve them as graduate students. Neurodiverse learners are one of the most underrepresented groups in higher ed and the STEM workforce despite their tremendous talent,” says Fumiko Hoeft, interim director of the Waterbury campus, director of UConn’s Brain Imaging Research Center (BIRC) and the principal investigator on the project.

The team also includes co-principal investigators Assistant Professor of Educational Psychology Ido Davidesco, Associate Professor of Developmental Psychology Nicole Landi, Associate Professor of Civil and Environmental Engineering and IMS faculty member, Arash Esmaili Zaghi, and Professor of Clinical Psychology Inge-Marie Eigsti; and co-investigators Professor of Psychology James Magnuson, Professor of Mathematics Fabiana Cardetti, Professor of Computer Science and Engineering Jinbo Bi, and Vice Provost for Graduate Education Kent Holsinger. Hoeft and Landi will co-direct TRANSCEND.

TRANSCEND will use the grant to allow second year graduate students to spend a full year researching convergent questions in educational neuroscience, with an emphasis on virtuous cycles between school and lab-based research, interdisciplinary team science, and in all areas of learning such as STEM and reading as well as developing the next generation of learning technologies using artificial intelligence (AI), with an underlying theme of neurodiversity.

The hope is that the students will then stay in the program and continue research on their topic of choice for their dissertation. Graduate students can be from any field of cognitive science, neuroscience, educational psychology, mathematics, computer science, and engineering. All graduate students in the program will have the opportunity to collect data in classrooms and in UConn labs, including the BIRC, the Cognitive Sciences Shared Electrophysiology Resource Lab, and the new mobile neuroscience lab by the College of Liberal Arts and Sciences that is planned to come online by this winter.

Community engagement will be key for generating project ideas and at every step of the process; graduate students will research questions that communities and teachers want answered. Leveraging Hoeft’s new position at

Multidisciplinary Team Wins $3M for Graduate Program
Researchers from Dr. Landi’s lab training high school student interns to place an EEG cap on a younger student’s head at the AIM Academy. (Landi Lab Photo, with permission from AIM Academy).

UConn Waterbury and this grant, she hopes to engage the Waterbury students and the community to bring new programs and collaboration to the campus.

For example, a team of students from computer science, educational psychology and cognitive neuroscience may develop a learning technology leveraging AI and natural language processing models, using accessible neuroimaging technologies such as portable electroencephalography, in partnership with an education technology company and a school.

“We want every STEM and Education grad student in the University to know they can join this. The funding is for their second year, but we want the graduate students to stay involved in the program throughout graduate school,” says Arash Zaghi, a structural engineering professor.

Zaghi began researching neurodiversity when he was diagnosed with ADHD early in his career as an engineer. He found that there was a lot of research showing great creative potential from neurodiverse people, but also great difficulties that lead them to drop out of university settings. Part of the motivation behind this collaboration is to generate strategies that both teachers and students can use to create strength and success from neurodiversity.

Hoeft and Zaghi also emphasize that neurodiverse students are strongly encouraged to apply. The team has partnership with universities in the NSF INCLUDES national network such as Landmark College, a college for students with learning disabilities. They hope to attract their students into graduate school at UConn through this grant. There are also almost 40 other partners, including schools, the Connecticut Department of Education, advocacy groups, and technology companies, all of whom are interested in gaining interns from the program and participating in research through partnership with UConn. Through this program, their hope is that neuroscience can help design and deliver education that helps all students reach their full potential, and at the same time enhance the STEM workforce.

IMS Faculty Members Working to Solve the Nation’s Energy Problems

from UConn Today

Yang Cao
Dr. Yang Cao

Three new grants totaling $7.5 million from ARPA-E and the U.S. Department of Energy (DOE) are enabling UConn researchers to conduct ground-breaking work on some of the nation’s most pressing energy problems. 

Advanced Research Projects Agency-Energy (ARPA-E) grants provide funding for the development of transformational technologies that provide new ways of generating, storing, and using energy.  

Shrinking Substations for Green Energy Integration 

Yang Cao, a professor in the School of Engineering, is working on a three-year ARPA-E project to create a new technology that will help stabilize the power grid and integrate renewable energy sources into the existing energy infrastructure. 

Substations are sprawling networks of wires, towers, and transformers. Substations change the high voltage that comes directly from energy generation stations into low voltage that can safely be delivered to homes or businesses. 

The century-old energy infrastructure in the United States is prone to power outages, especially during increasingly common severe weather. 

This infrastructure is also poorly suited to renewable energy sources as they were designed for fossil fuels. 

With something like wind or solar energy, the energy sources are spread out across a huge expanse rather than coming from a neatly packaged oil barrel. Solar panels or wind turbines also tend to be in remote areas far from major cities that have massive electrical needs. This means we need more efficient technologies that can link distributed energy generators to urban areas. 

Cao will work with Virginia Tech on the project, titled Substation in a Cable for Adaptable, Low-cost Electrical Distribution (SCALED), to develop high-voltage cables to replace bulky substations. 

“We need a more versatile and compact conversion and integration solution for distributed renewable energies,” Cao says. “This overall project is targeting that.” 

Making something this compact will be highly advantageous as they can be placed almost anywhere, whereas current substations require a tremendous amount of open space. 

The goal of the project is to greatly reduce the footprint of substation technologies without compromising its effectiveness. 

“We could really have a very compact substation that helps to convert and integrate the distributed energy generation into a grid instead of having really large, bulky substations,” Cao says.  

A Better Path for New Materials 

James N. Hohman
Dr. J. Nathan Hohman

Nate Hohman, assistant professor of chemistry, is working on a new DOE grant to develop artificial intelligence (AI) tools to improve the synthesis of new materials. 

While scientists are constantly innovating new materials for energy, biotechnology, and many other applications, currently, the best tool they have at their disposal for this process is trial and error.  

“Engineering a new hypothetical material today requires guesswork at every step,” Hohman says. “We guess what compounds might crystallize into a structure that may have a property of interest, hope we get the material we expected, and pray it has the properties we imagined. This is inefficient, labor intensive, and has a low likelihood of success.”  

Hohman will combine nano-crystallographic characterization with Euclidean neural networks to develop a better technique for real-time characterization of materials using a continuously variable model material system.  

Crystal characterization allows scientists to see how the atoms that make up a molecule are arranged. This information is critical for designing new materials as this structure is what determines what the material can do.  

Hohman recently found a way to study crystal structure using an X-ray beam. This allowed his team to capture a crystal’s single diffraction pattern and merged them into a data set they can use to determine the atomic structure. This speeds up the process of characterizing new materials from months or even years to just hours.  

Euclidean neural networks are artificial neural networks inspired by the human brain. A set of artificial neurons transmits signals to other neurons in the system in order to classify objects. Hohman’s collaborator Tess Smidt at MIT developed Euclidean neural networks that can handle 3-D geometries, like those of molecules.  

Hohman in collaboration with other synthetic materials scientists, computational crystallographers, and deep learning researchers will use these networks to train machine learning algorithms to predict new phases of materials. This will help eliminate guesswork from materials development.  

Hohman will have the neural networks will help scientists design and generate novel atomic geometries with desirable properties based on what the scientists want the material to do.  

Designing for High Heat 

Julian Norato
Dr. Julián Norato

Julián Norato, associate professor of mechanical engineering, is working on an ARPA-E grant to develop computational techniques to design highly efficient and compact heat exchangers. 

Heat exchangers are mechanical devices that transfer heat from a hot to a cold fluid. They are found in everything from air conditioners to space heaters to chemical plants to airplanes. 

The heat exchangers Norato’s group will focus on operate at temperatures above 1100 degrees Celsius (approximately 2000 degrees Fahrenheit). These high-temperature heat exchangers are used in many applications, including gas turbine engines, waste heat recovery and hydrogen production. 

The grant will focus on plate-and-frame heat exchangers, which consist of stacks of plates bolted together to a frame. The hot and cold fluids flow between alternate plates. Each plate has a pattern of obstacles to the flow embossed on one side. This helps increase the amount of heat transferred from the hot fluid to the plates, and to the cold fluid flowing through the adjacent plates. 

“The fluid is forced to go through the flow structures inside the plates,” Norato says. “Essentially, you’re putting obstacles to the fluid to force it to mix and spend more time going from the inlet to the outlet of the plate.” 

What these obstacles look like will determine how efficient the heat transfer is. The computational techniques that Norato’s group will formulate will determine the optimal shape and pattern of these obstacles to maximize the heat transfer. At the same time, the design must ensure the pressure drop the fluid experiences as it flows through a plate is kept to a minimum, and that the plates can sustain the pressure the fluid exerts at the high operating temperatures. 

The researchers are also interested in making the device as small and light as possible, which is especially important in aerospace applications that have space and weight restrictions. 

The project will be conducted in collaboration with Altair Engineering, whose computational fluid dynamics software the researchers will use to simulate the heat transfer and the mechanical behavior of the heat exchanger. 

Norato will also collaborate with researchers from Michigan State University, who have developed an additive manufacturing technique to efficiently 3D print the heat exchanger plates out of a metal alloy that can operate at high temperatures. They will 3D print the plate designs obtained by the computational techniques developed by Norato and test the performance and integrity of the heat exchanger in an experimental setup. 

Cato Laurencin Honored by American Orthopaedic Association

from UConn Today

Dr. Cato Laurencin
Dr. Cato T. Laurencin is now added to the AOA Award Hall of Fame (AOA Photo/Kyle Klein).

Dr. Cato T. Laurencin, University Professor at the University of Connecticut, has been honored by the American Orthopaedic Association (AOA) with its Distinguished Contributions to Orthopaedics Award adding him to its AOA Award Hall of Fame.

Laurencin, the Albert and Wilda Van Dusen Distinguished Professor of Orthopaedic Surgery at UConn School of Medicine, was selected for the special recognition by his AOA member peers for his remarkable personal achievement and contributions to orthopaedic surgery.

He accepted the award the evening of June 15 at the AOA’s Annual Leadership Meeting at the Rhode Island Convention Center in Providence. “I am so honored to accept the American Orthopaedic Association Distinguished Contributions to Orthopaedics Award and be recognized in the AOA Awards Hall of Fame. I feel so fortunate to be an orthopaedic surgeon.”

The AOA Distinguished Contributions to Orthopaedics (DCO) Award recognizes Laurencin for his personal achievement and broad contribution to the orthopaedic specialty, leadership, impact on patient care, and clinical and basic science research. The mission of the AOA is engaging the orthopaedic community to develop leaders, strategies and resources to guide the future of musculoskeletal care.

In addition to being a practicing sports medicine and shoulder surgeon consistently named to America’s Top Doctors list, Laurencin is a world-renowned surgeon-engineer-scientist and a pioneer of the field of regenerative engineering.

In fact, Laurencin is leading the first international effort ever for knee and limb engineering with his Hartford Engineering a Limb (HEAL) project which aims at regenerating a human limb by 2030. The National Institutes of Health and the National Science Foundation currently fund this research work through Laurencin’s large grant awards including the NIH Director’s Pioneer Grant Award and the National Science Foundation’s Emerging Frontiers in Research and Innovation Grant Award.

In orthopaedic surgery, Laurencin has been the first to win the “trifecta” of orthopaedic research lifetime awards: the Nicolas Andry Award from the Association of Bone and Joint Surgeons, the Marshall R. Urist Award from the Orthopaedic Research Society, and the Kappa Delta Award from the American Academy of Orthopaedic Surgeons.

Nationally, Laurencin is the first surgeon in history to be elected to all four national academies: the National Academy of Sciences, the National Academy of Engineering, the National Academy of Medicine, and the National Academy of Inventors. He is an elected fellow of the American Academy of Arts and Sciences and an elected fellow of the American Association for the Advancement of Science.

Laurencin is a laureate of the National Medal of Technology and Innovation, America’s highest honor for technological achievement, awarded by President Barack Obama at the White House. He is the recipient of the prestigious Spingarn Medal, the highest honor of the NAACP bestowed upon such Americans as Martin Luther King Jr., Maya Angelou, George Washington Carver, Jackie Robinson, and Duke Ellington.

At UConn Laurencin is also a professor of chemical engineering, materials science and engineering, and biomedical engineering and serves as CEO of The Connecticut Convergence Institute for Translation in Regenerative Engineering. He has received the highest honors in engineering, medicine and science, including the Philip Hauge Abelson Prize given for “signal contributions to the advancement of science in the United States.”  The American Institute of Chemical Engineers recently established the Cato T. Laurencin Regenerative Engineering Founder’s Award in honor of his breakthrough achievements in that field.

Laurencin received his BSE in chemical engineering from Princeton University, his MD, magna cum laude from the Harvard Medical School, and his Ph.D. in biochemical engineering/biotechnology from the Massachusetts Institute of Technology.

Anna Tarakanova is Studying Elastins to Develop Aging-Related Therapies

from UConn Today

Dr. Anna Tarakanova
Mechanical engineering professor Anna Tarakanova listens during the 2020 Women in STEM Frontiers in Research Expo, which she co-organized. (Contributed photo)

Anna Tarakanova has long had an interest in how objects and bodies work. Her chosen specialty in the field of Mechanical Engineering – studying the structure, function, and mechanics of biological systems and materials, especially fibrous protein materials such as elastin and collagen – merges the two.

The assistant professor of mechanical engineering and her team are working to establish a high-fidelity modeling framework for both healthy and degenerated elastins for use as a tool to resolve different pathological stressors affecting how elastin functions from a nanoscale.

During aging and with chronic, often age-related illnesses such as diabetes, cardiovascular disease, and osteoarthritis, elastin can degenerate, causing a decline in normal function. Elastin is an essential structural protein that gives the skin, heart, blood vessels, and other elastic tissues in the body the stretchy quality they need to function.

“At the molecular scale, there are a number of physical-chemical modifications that occur that drive this mechanical degeneration over time,” Tarakanova says. “Because they are quite numerous and act in parallel, it’s difficult to deconstruct which triggers impact mechanics and to what degree. If we can understand the mechanism, we can think about novel therapies to target aging and aging-associated diseases.”

Tarakanova’s work has earned her a 2022 Early Career Development (CAREER) Award from the National Science Foundation. She is one of 11 junior faculty members at UConn this year to receive the coveted award, which recognizes the recipient’s potential as a role model in education and research.

CAREER Awards come with five years of funding intended to provide a foundation for a young professor’s research program. Beyond advancing her research, Tarakanova plans to use the funding to create activities and events to engage and support undergraduate and graduate students, especially those from underrepresented groups. The effort will include a reboot of a Women In STEM Frontiers in Research Expo she co-organized with a colleague in January 2020.

“For me, it was kind of a natural extension of what I wanted to do as a professor, being a woman in STEM and being a minority for most of my education career,” Tarakanova says.

Elastin and collagen are not the only protein materials getting her attention. Early in the pandemic, Tarakanova and two of her graduate students began exploring the spike protein associated with SARS-CoV-2 to figure out how it moved when it interacted with the immune system. She is now working with Paulo Verardi, a pathobiologist in UConn’s College of Agriculture, Health and Natural Resources, and UConn biochemist Simon White to develop new and potentially better ways to stabilize spike proteins for use in COVID-19 vaccines, particularly in relation to emerging new variants of the virus.

“Some of the methods we are using to study the spike protein are related to the methods that we’ve used and continue to use to look at elastin,” she says. “It’s a different project, but it does broadly fall under this fusing of computing and computational models, physics, biomechanics, and biochemistry to understand the dynamic behavior of the COVID spike protein, the protein that sits on part of the corona.”